
7 A-AI15 636 AIR ORCE INST OF TECH WRIGHT-PATTERSON
AFB OH

F/6 9/2
ANALYSIS AND DESIGN OF INTERACTIVE DERUGGING FOR THE ADA PROGRA-_ETC(UD

NCOV. N 8a R L SALPOINO
UNCLASSIFIED AFIT/GCS/MA/8ID-3 NL,IFlflfflfllfllflfflf

mhhmmhommhhuo

N, *

7W

~~UNITED STATES AIR FORCE 0

~~AIR UNIVERSITY ,

AIR FORCE INSTITUTE OF TECHNOLOGY .
~Wright-Patterson Air Force SaseOhio

\ 82 06 16 010

AFIT/GCS/MA/81D-3

(

ANALYSIS AND DESIGN OF INTERACTIVE
DEBUGGING FOR THE ADA PROGRAMMING

SUPPORT ENVIRONMENT

THESIS

AFIT/GCS/MA/81D-3 Richard L. Gaudino

Approved for public release; distribution unlimited.

iT1
: .. .h CTE_

t , ~
L

II

ANALYSIS AND DESIGN OF INTERACTIVE DEBUGGING FOR THE ADA

PROGRAMMING SUPPORT ENVIRONMENT

THESIS

PRESENTED TO THE FACULTY OF THE SCHOOL OF ENGINEERING
OF THE AIR FORCE INSTITUTE OF TECHNOLOGY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE IN COMPUTER ENGINEERING

BY

RICHARD Lo GAUDINO

CAPT USAF

GRADUATE COMPUTER SCIENCE

21 November 1981

Approved for public release; distribution unlimited.

Accession For

N TIS GRA&I

DTIC TABUnannounced
. ~~~Just if icat iorL-

* By--(0 Distribution/

Availability Codes

Avzil and/or

Dist Sptcial

AFIT/GCS/MA/81D-3

PREFACE

In an effort to significantly reduce costs for

programming, the Department of Defense has funded the

development of the Ada programming language and an Ada

Programming Support Environment. This environment is designed

to support the development and maintenance of software. A

part of this devlopment is to include a debugger facility

for Ada programs.

The debugging facility specified in the Ada environment

is designed to assist users in detecting, locating, and

correcting errors in Ada programs. I felt that debugging

facilities have been largely ignored in the past which gave

me a strong interest and desire to do this thesis topic.

I would like to thank my advisor, Capt Roie Black, for

all the help he gave me. His ideas and directions were

essential. I would also like to thank my wife whose patience,

help, and understanding made this thesis effort possible.

Mi

/

Table of Contents

1. INTRODUCTION 1

1.1 OBJECTIVE 2
1.2 SCOPE 3

1.2.1 Debugging 3
1.2.2 A Debugging Tool 3

1.3 ASSUMPTIONS 4
1.4 BACKGROUND 5

2. SOFTWARE DEBUGGING TECHNIQUES 8

2.1 Multics 8
2.2 GCOS 8
2.3 CDC 8
2.4 DEC-10 8
2.5 Multics Debugging Capabilities 9

2.5.1 Debug 9
2.5.2 Dump 9
2.5.3 Page Trace 10
2.5.4 Probe 10
2.5.5 Profile 10
2.5.6 Trace 10
2.5.7 Trace Stack 10

2.6 GCOS Debugging Capabilities 11
2.6.1 RBUG 11
2.6.2 TDS 12
2.6.3 DEBUG 12
2.6.4 TRACE 12
2.6.5 FDUMP 12

2.7 CDC Debugging Capablities 13
2.7.1 CID 13

2.8 DEC-10 Debugging Capabilities 13
2.8.1 JID 13

2.9 Analysis 13

3. REQUIREMENTS FOR THE ADA DEBUGGER 16

3.1 Tool Selection/Requirements i6
3.1.1 Breakpoints 16
3.1.2 Display Values 16
3.1.3 Modify Values 16
3.1.4 Display and Modification 16
3.1.5 Display Subprogram Arguments 17
3.1.6 Modify the Flow 17
3.1.7 Tracking 17
3.1.8 Dumps 17

3.2 The Ada Compiler 17
3.2.1 Pseudo-Code 18
3.2.2 Symbol Table 19

3.3 Stack Implementation 20t lii

3.3.1 Nesting and Recursion 24

4. DEBUGGER TOOL IMPLEMENTATION 27

4.1 The Compiler Output 27
4.1.1 Pseudo-code 27
4.1.2 Source-line Table 27
4.1.3 Symbol Table 28

4.2 The Debugger Tools 30
4.2.1 Breakpoints 30
4.2.2 Single Step 31
4.2.3 Multi-step Execution 33
4.2.4 Trace 33
4.2.5 Jump 34
4.2.6 Display Values 36
4.2.7 Modify Values 37
4.2.8 Modify Program 39
4.2.9 Output Stack 39
4.2.10 Miscellaneous Tools 40

5. RECOMMENDATIONS AND CONCLUSIONS 41

5.1 Improvements as the Compiler Changes 41
5.2 Improvements to the Debugger .42
5.3 Improvements to the Man-machine Communications 42

Interface
5.4 Conclusions 45

I. APPENDICES 48

I.1 Peculiarities of DEC-10 Pascal 48
1.2 DEC-10 Character Input 49
1.3 Linking Externally Compiled Programs 51
1.4 STACK-FRAME CONTROL DATA 52
1.5 INSTRUCTION SET 55
1.6 COMPILER USER'S GUIDE 56
1.7 DEBUGGER USER'S GUIDE 60
1.8 DEBUGGER SOURCE LISTING 68

iv

!! .

List of Figures

f Figure 3-1: STORAGE AREA 21
Figure 3-2: PROCEDURE MAIN 21
Figure 3-3: DATA AREA ORGANIZATION 21
Figure 3-4: PROGRAM MAIN COMPILED CODE 21
Figure 3-5: STACK WITH A CALLED PROCEDURE 24
Figure 4-1: SOURCE-LINE TABLE 28
Figure 5-1: INCORRECT PROGRAM EXAMPLE 49
Figure 5-2: CORRECT PROGRAM EXAMPLE 49

* -

t'V

AFIT/GCS/MA/81D-3

ABSTRACT

This thesis involved the design and implementation of a

skeletal interactive Ada debugger on the DEC-10 computer

located at the Air Force Wright Avionics Laboratory. An

analysis of current debugging technology was performed to

formulat a basis for the debugger tool development. The

tools implemented where breakpoints, single step and

multi-step execution, display and modify program variables,

as well as other miscellaneous options. Two conclusions were

developed as the result of this thesis effort. First, because

of the lack of information on current software debugging

methods, I have concluded that more emphasis is needed in

techniques and tools for debugging of programs. Second, I

have concluded that more emphasis is needed in the human

interfacing techniques.

v

' vi

AFIT/GCS/MA/81D-3

1. INTRODUCTION

The Department of Defense has been forced to search for

budget reducing strategies because of the ever increasing

costs of software. An important goal of the Do!) is the

achievement of cost-effective reliability in the continuing

support of long-lived embedded computer systems (Ref 2 :6).

An outgrowth of this search for cost-effective reliability

was the development of the computer language Ada.

ADA is not just another "reliable enough" software

language. During the development of the ADA language, the

support environment for this language was also addressed. The

ADA Programming Support Environment (APSE) objectives were

developed to permit testing and debugging of ADA programs

executing in any machine which is supported by an APSE (Ref 4

9-3).

A Mimimal Ada Programming Support Environment(MAPSE)

tool set was also established because of a requirement for

the portability of both the APSE tools and Ada. This MAPSE

specified that a debugging facility to assist users in

detecting, locating, and correcting errors in Ada programs

was to be developed (Ref 2 : 3-33).

As one of many ongoing AFIT efforts with Ada, the

subject of this thesis is the diagnosis of errors in ADA

computer programs. This diagnosis is commonly referred to as

software debugging. The purpose of this thesis is to gather

AFIT/GCS/MA/81D-3

information on software debugging techniques and procedures

available and then integrate these techniques as the basis

for the development of a skeletal interactive debugging tool

for the ADA programming support environment.

t The interactive debugging tool for this thesis was

developed on the Air Force Wright Avionics DEC-10 computer

using the compiler developed by Capt Allen Carlington as one

of the AFIT efforts with Ada (Ref 5).I. 1.1 OBJECTIVE
The objective of this thesis is to develop an

understanding for the development of a software debugging

tool and to implement a skeletal interactive ADA debugger.

The study will be accomplished in steps which are documented

in the following chapters.

The first step consists of acquiring and analyzing

information related to current software debugging techniques.

Several existing debugging facilities in use in Air Force

installations were examined and common facilities were

identified.

The second step documents software debugging

requirements specified by Stoneman which provides guidance on

the functional processes inherent in debugging, selection of

tools and information requirements for software debugging

activities.

2

AFIT/GCS/M4A/81D-3

Finally, all this information is used to develop a

step-by-step debugging procedure. This debugging procedure is

directly applicable to the ADA language currently being

developed as one of the ongoing efforts within AFIT.

The last step of this thesis effort is to list

conclusions and recommendations based on the previous steps.

1.2 SCOPE

Debugging is a complex set of interelated tasks which

are initiated at completion of the translation of a software

design into a machine-executable format. The task of

debugging continues into the operation and maintenance phase

of the software life~ cycle. The objective of this thesis is

to concentrate on those debugging activities which are

applicable to the ADA language. To clarify the scope of this

thesis, the following definitions are given.

1.2.1 Debugging

Debugging is the art of locating an error once its

existence has been established (Ref 11: 176).

1.2.2 A Debugging Tool

A debugging tool is a hardware or software (this thesis

will deal only with software) capability used to find the

symptoms and isolate the causes of an identified flaw. A

debugging tool differs from a test tool in the purpose for

which it is employed. A test tool finds software problems

3

AFIT/GCS/MA/81D-3

while a debugging tool helps find the cause or causes of the

problem (Ref 11: 177-178).

1.3 ASSUMPTIONS

The following assumptions limit the scope of this

thesis:

1. No modification or enhancement to the Ada Compiler

developed by Capt garlington will be made (Ref 5).

2. The computer environment to be examined for

implementation is the DEC-10.

3. This thesis is concerned with error detection, not

correction.

4. The approach taken, whenever possible, is general in

nature even though this thesis is primarily intended for the

ADA programming language.

5. No attempt is made to define any new debugging tool

concepts. This thesis deals only with existing concepts.

6. Cost factors such as speed and memory will not be an

issue of direct concern to any debugging capabilities.

7. This thesis implements only a partial ADA debugger

since only a partial Ada compiler exists.

4

AFIT/GCS/MA/81D-3

1.4 BACKGROUND

No one writes totally error free programs. In addtion to

the problems of writing programs, programmers spend vast

amounts of time debugging their source code. Estimates of the

time spent on debugging vary from fifty to ninety percent

(Ref 11: 119). A debugger would greatly reduce the time

programmers spend correcting errors.

Computer programming is a creative art, best done by

individuals, and debugging is a highly individual aspect of

programming. The techniques that may be useful for debuggingIdepend very highly on the individual situation: the

environment in which the programmer is working, the debugging

aids available, the particular algorithm being performed, and

the nature of the particular bug or bugs the programmer is

trying to find, Furthermore, in order to find a bug in a

program requires some intelligence, i.e., a mechancial

procedure can only occasionally tell what the error is. For

example, the programmer may be informed that in the test

program an attempt was made to access memory outside the

range of an array. This may be the exact bug, but more than

likely it is a symptom of a mistake elsewhere in the program

which no mechancial procedure could determine.

Because debugging is such a highly personal and

intellectual process, it has received very little detailed

treatment in computer science literature in the past. IL is

5

AFIT/GCS/MA/81D-3

interesting to note that an examination of many introductory

programming texts revealed that debugging is often not

mentioned, while those texts that mention debugging only

offer a few brief sentences. Even the book Program Style,

Design, Efficiency, Debugging,and Testing by Van Tassel which

offers a chapter on program debugging includes "added

emphasis on getting the programs right the first time" (Ref

11).

There are several reasons that may account for debugging

receiving only brief mentions in literature in the past. One

reason is that of priorities. It has been suggested that

debugging is the third of the major bottlenecks to

programming and could not have received much attention until

the first two were removed. The first bottleneck was

hardware. During the early years of programming, a programmer

spent much planning time squeezing programs into a limited

amount of memory. This bottleneck has been greatly reduced in

the past years with improved hardware with sufficient amounts

of core. The next bottleneck was software for program

writing. The developments in programming languages during the

last decade have greatly eased the programmer's task of

expressing algorithms in terms acceptable to the computer

(Ref 6 : 28-31). We have, then, machines big enough and fast

enough to execute most useful programs, and software varied

and reliable enough to get those programs written; what now?

Now; we get ADA which specifies an environment that includes
6

4f- AFIT/GCS/MA/81D-3

a debugger program requirement.

7

AFIT/GCS/MA/81D-3

2. SOFTWARE DEBUGGING TECHNIQUES

The analysis of current debugging technology is a

prerequisite to formulating a methodology applicable to

development of an interactive Ada debugger. The choice of

debuggers for analysis was based on the immediate

accessibility of the debugging tools within the chosen

facilities. Much of the information presented in this chapter

is detailed in its examination of debugging tools and

techniques. The reason for including such detailed

information is to provide a firm basis for the subsequent

tasks of this thesis. The tools selected to be analyzed are

found on the following systems:

2.1 Multics

Multics H6180 located at the Rome Air Development Center

(RADC), Griffiss AFB, Rome, New York.

2.2 GCOS

GCOS H6180 located at the Rome Air Development Center.

2.3 CDC

CDC 175/74 located at the Aeronautical System Division

(ASD), Wright-Patterson AFB, Dayton, Ohio.

2.4 DEC-10

DEC-10 located at the Air Force Wright Avionics

Laboratory (AFWAL), Wright-Patterson AFB, Dayton, Ohio.

8

AFIT/GCS/MA/81D-3

2.5 Multics Debugging Capabilities

The Multics environment supports Fortran, APL, Basic,

Cobol, and PL/1 languages. The debugging capabilities

available for these languages on the H6180 Multics are Debug,

Dump, Page Trace, Probe, Profile, Trace, and Trace Stack (Ref

8).

2.5.1 Debug

The Debug command is an interactive debugging aid that

allows the user to look at, or modify, data and code. The

concept of breakpoints is implemented and thus makes it

possible for the user to gain control during program

execution for whatever reason. Symbolic references permit

the user of Debug to refer to variables of interest directly

by name. The Debug command provides the user with the

capabilities of looking at data or code, modifing data or

code, setting breakpoints, performing transfers, calling

procedures, tracing stacks, looking at subprogram arguments,

controling and coordinating breakpoints, changing the stack,

and printing the machine registers.

2.5.2 Dump

The Dump command prints selected portions of a segment

in octal format. Dump will print out four or eight words per

line and can be instructed to print out an edited version in

ASCII representation.

9

AFIT/GCS/MA/81D-3

2.5.3 Page Trace

The Page Trace command prints a recent history of page

faults and other systems events.

2.5.4 Probe

The Probe command provides symbolic, interactive

debugging facilities for programs compiled with PL/1,

Fortran, or Cobol. Probe provides the following functions:

1. Set a breakpoint before or after a statement.
2. Call an external procedure.
3. Transfer to a statement.
4. Stop the program.
5. Assign a value to a variable.
6. Examine a specified statement.
7. Locate a string in the program.
8. Delete one or more breakpoints.
9. Display source statements.

10. Trace one statement and halt.
11. Advance one statement and halt.
12. Display the value of a variable.

2.5.5 Profile

The Profile command prints information about the

execution of each statement in P1/i or Fortran programs.

2.5.6 Trace

The Trace command monitors all calls to a specified set

of externally compiled procedures.

2.5.7 Trace Stack

Many computers support the use of standard LIFO

(last-in,first-out) stacks. These stacks can generally be
10

| ... -lb

AFIT/GCS/MA/81D-3

broken into data stacks and return stacks. The data stack is

used to store numbers and addresses. The return stack is

used to store program flow-control parameters. As the program

executes, the information in the stack will change depending

on the source code.

The Trace Stack command prints a detailed explanation of

the current process's stack history in reverse order (most

recent first). For each stack, all available information

about the procedure which establishes the stack, the

arguments to that procedure, and the condition handlers

established in the stack are printed. Trace Stack also prints

the machine registers at the time of a fault with an

explanation of the fault and the source line in which the

fault occured.

2.6 GCOS Debugging Capabilities

The debugging capabilities available on the R6180 GCOS

are RBUG, TDS, Debug, Trace, and FDUMP (Ref 7).

2.6.1 RBUG

RBUG is a conversational debugging tool for batch

programs using a teletype terminal as the programming device.

The functions available with RBUG aid the programmer in

inspecting and modifing program instructions, registers, and

data parameters while testing the program in the execution

environment. RBUG provides functions to print the registers,

insert breakpoints, remove breakpoints, modify a register,
11

W 7

AFIT/GCS/MA/81D-3

and terminate a program.

2.6.2 TDS

TDS is used to checkout and test a subsystem. TDS allows

the user to gain control from a terminal at selected

locations. TDS provides the user with the capabilities to

insert breakpoints, delete breakpoints, modify a register,

snap or display memory, display registers, and set and reset

values.

2.6.3 DEBUG

Debug is an upgrade of RBUG and TDS. In addition to the

functions of RBUG and TDS, Debug offers a trace mechanism,

octal-to-decimal conversion, and decimal-to-octal conversion.

2.6.4 TRACE

The Trace package provides program information

dynamically as it is executed. The trace shows the

step-by-step operations of execution. The trace package

allows for tracing the regsters, instruction execution,

specified operation codes, and subroutines.

2.6.5 FDUMP

The FDUMP subsystem operates under a time-sharing system

and is used to inspect and modify mass storage files in the

permanent file system of GCOS. FDUMP will display a file in

320-word blocks and permit a word in the block to be

modified.

12

-

AFIT/GCS/MA/81D-3

2.7 CDC Debugging Capablities

Control Data Corporation offers the Cyber Interactive

Debug (CID) Facility for Fortran Programming (Ref 3).

2.7.1 CID

CID is an interactive debugger that operates on Fortran

programs. The functions available with CID aid Fortran

programmers in inspecting and modifying program data

parameters while testing the program in the execution

environment. CID provides functions to set breakpoints, set

traps, display variables, and alter variables.

2.8 DEC-10 Debugging Capabilities

TRW developed a Jovial Interactive Debugger (JID) which

operates on the AFWAL DEC-10 computer (Ref 10).

2.8.1 JID

JID is an interactive debugger that operates on Jovial

programs. The functions available with JID aid Jovial

programmers in examination and modification of variables and

execution of programs or procedures. JID provides functons to

set breakpoints, display variables, alter varables,

backtrace, and a help function.

2.9 Analysis

The debugging techniques listed in this chapter fall

into three classes. These techniques can be classified as

1)debugging with a storage dump, 2) debugging according to

13

AFIT/GCS/MA/81D-3

traces, and 3) debugging with automated debugging tools.

Debugging by analyzing a storage dump is a very

inefficient method. This technique uses a crude display of

all storage locations in octal or heexadecmal format. Using

the dump technique presents many problems. The correspondence

between storage locations and the variables in the sourceI. program is difficult to establish using dumps. Dumps provide

a massive amount of data, most of which is irrelevant. The

dufip technique only provides a static picture of the program

and is rarely produced at the exact point of the error.

Therefore, the program's state at the point of the error is

not shown and actions taken by the program between the time

of the error and the time of the dump can mask out required

information. Finally, there is no set methodology for

finding the cause of the error by analyzing a storage dump

(Ref 11 :213).

The second debugging technique, program traces, is not

much better than dumps. Traces are superior to the use of

dumps in that the trace displays the dynamics of a program

and allows the programmer to examine information that is much

easier to relate to the source program. However, traces have

many problems. The trace can result in a massive amount of

data to be analyzed. This does not encourage the programmer

to think about the problem being debugged but rather provides

a hit-or-miss method of finding errors (Ref 11 : 213-215).

14

AFIT/GCS/MA/81D-3

The final debugging technique, automated debugging

tools, allows the analysis of the program by using debugging

features of special interactive debugging tools. A common

function of the debugging tools is the ability to set

breakpoints causing the program to be suspended when a

particular statement is executed, or when a particular

variable is altered. These features of the debugging tools

allow the programmer to examine the current state of the

program. This method is not an automatic feature for

correcting errors but it does encourage the programmer to

think about the problem being debugged (Ref 11 215-216).

15

(AFIT/GCSIMA/81D-3

3. REQUIREMENTS FOR THE ADA DEBUGGER

3.1 Tool Selection/Requirements

The Minimal Ada Programming Support Environment (MAPSE)

design specified that the debugging facilities for ADA were

to assist the users in detecting, locating, and correcting

errors (Ref 2 : 3-33). The MAPSE design specifically stated

that the Ada debugging facilities would support all Ada

language features, including the following features as a

minimum.

3.1.1 Breakpoints

The breakpoint feature for Ada debugging is to include

conditional, preset, dynamically set, and single step breaks

(Ref 2 :3-33).

3.1.2 Display Values

The display feature for Ada debugging is to include

Fdisplaying variables as well as constants (Ref 2 : 3-33).

3.1.3 Modify Values

Like display, the modify feature is to include modifing

variables and constants (Ref 2 : 3-33).

3.1.4 Display and Modification

Display and modification of variables in machine

representation (such as hexadecimal) or scalar type

representation based on the user's option (Ref 2 :3-33).

16

:7- ,- I

AFIT/GCS/MA/81D-3

3.1.5 Display Subprogram Arguments

The values of each argument or formal parameter of

subprograms (procedures) will be displayed (Ref 2 : 3-34).

3.1.6 Modify the Flow

The flow of the program will be able to be modified

using a jump option (Ref 2 3-34).

3.1.7 Tracking

A tracking of the program by listing changes in

variables as well as specifing the executing statememts shall

be performed (Ref 2 : 3-34).

3.1.8 Dumps

A Dump option shall be included (Ref 2 : 3-34).

3.2 The Ada Compiler

Because debuggers are directly tied to a particular

compiler, the first step toward developing an Ada Debugger is

to establish an understanding of the Ada Compiler. The Ada

compiler that is used for this thesis was developed by Alan

Garlington as part of his thesis effort in the design and

implementation of an Ada pseudo-machine (Ref 5). Several

important features of the compiler need to bc understood

before the development of the debugger can be considered.

These include the symbol table, pseudo-code, stack

implementation, and nesting and recursion.

The technique used by the Garlington compiler was the
17

..............................L-.

AFIT/GCS/MA/81D-3

development of the pseudo-code compiler. This compiler

generates pseudo-code for a hypothetical processor that

enhances the compiler's portability. The pseudo-code

generated from this compiler is then executed by an

interpreter program which runs on the actual processor (Ref 5

8-9).

An interface between the compiler and the Debugger must

be made since the debugger uses output from the compiler.

The compiler generates the pseudo-code from the programmer's

source code. The debugger must have a link between the source

code and the compiler generated pseudo-code. This link is

necessary for the proper execution of the debugger program.

3.2.1 Pseudo-Code

The Garlington Ada compiler was written using techniques

that enhanced its portability. The technique that was used

was the pseudo-code compiler approach. Using this approach,

the compiler generates pseudo-code for a hypothetical

processor. The instruction set was designed to be executed by

an interpreter program which runs on an actual processor.

Since there was no pseudo-machine, a simulator was created.

The simulator program accepts the pseudo-code as input and

then accomplishes the necessary actions for each instruction

of the pseudo-code (Ref 5 % 8-9).

The instruction set output from the compiler was

specifically developed to meet the needs of the Ada language
18 *

.- -------

AFIT/GCS/MA/81D-3

although only a subset of the language was considered. The

current instructions implemented are divided into six

classes: relational operators, single-word loads and stores,

tasking operators, integer arithmetric operators,

input/output operators, and miscellaneous operators. Each

instruction contains three fields: the operation code, the

level, and the address fields.

The 3peration code field contains the name of a specific

operation to be performed. At simulation time, these operands

are implemented on the run-time stack and evaluated according

to the indicated operation.

3.2.2 Symbol Table

A copy of each identifier appearing in a program is

contained in a string table. Linked to this string table is

an attribute table which contains the properties assigned to

each identifier. The attributes can then be made available

throughout the compilation process. Together these two tables

are called the symbol table.

In the generation of the pseudo-code, the compiler

generates a symbol table which contains a description of all

user-defined symbols relevant to the environment in which

they are declared (Ref 5 : 61).

An analysis of the symbol table is extremly important to

formulating a methodology for the development of the

19

k " - -'- 7 -" , a.. -' ,. ,

AFIT/GCS/MA/81D-3

debugger. The symbol table which is used by the compiler to

generate the pseudo-code is also needed by the debugger so

that it can manipulate program variables.

The compile time symbol table contains information which

pertains to the type of data that appears within the source

program. The table contains information on variables, arrays,

subprogram names, and constants. The compiler does not

generate a fixed run-time address for these symbols at

compile time. The symbols are assigned locations relative to

the beginning of the procedure (this can be done since the

storage space required is known) (Ref 5 :37).

3.3 Stack Implementation

In a block structured language such as Ada, each time a

given procedure is activiated, the procedure is allocated a

fixed amount of storage on top of a data stack. The size of

the stack is implementation dependent. The amount of storage

allocated will depend on the declarations in the procedure

(or block), but the total storage needed will be computed at

compile-time. This storage remains assigned to that

procedure as long as it is activated. When an exit of a

procedure occurs, that storage assigned to the procedure will

be freed for reuse. Using this method, the total amount of

storage allocated for data is limited by the number of

procedures currently activated. The data allocation is

therefore independent of the total procedures or blocks used

20

4 -

AFIT/GCS/MA/81D-3

in the program. Using this scheme, the particular section of

the stack in which the data area of a procedure may reside

will vary during program execution and cannot be predicted at

compile-time. Each activation of the same procedure may be in

an entirely different section of the stack.

The storage area will hold the values of the variables

and task activation information. The task activation

information includes the stack-frame control data. The values

'of all the variables are determined at run-time (see Figure

3-1). Constants are fixed at compile time and cannot be

changed for successive activations of a procedure.

The task activation information is generated upon

entrance to a block, subprogram, or upon initialization of a

nested task object. The stack-frame contains the static link,

the dynamic link, program counter, task flag, exceptions,

priority, top of stack, base, link, heap, data lock, caller,

return, and entry (Ref 5 : 30-1). Each of these terms are

defined in the Appendix.

The physical location of an identifier will change

during execution, but the relative offset from the beginning

of the area reserved for the procedure in which it is

declared will be fixed. If the location of the beginning of

the procedure's data area is known, the location of the

identifier's storage can then be computed at run-time. Figure
"7

3-3 shows the organization of the data area for the program
21

mai

AFIT/GCS/MA/81D-3

STACK

VARIABLE
STORAGE
AREA

TASK
ACTIVATION
DATA

Figure 3-1: STORAGE AREA

1 PROCEDURE MAIN IS
2 VAR
3 A, B INTEGER;
4 BEGIN
5 A :- 1;
6 B :- 2;
7 END MAIN;

Figure 3-2: PROCEDURE MAIN

22

AFIT/GCS/MA/81D-3

STACK FRAME

I j< TOP OF STACK

I <T
VARIABLE B

VARIABLE A

TASK
ACTIVATION
DATA

I_< BASE

Figure 3-3: DATA AREA ORGANIZATION

OPERATION LEVEL OFFSET

1 INCT 0 18
2 ILOADCONST 0 1
3 ISTORE 0 17
4 ILOADCONST 0 2
5 ISTORE 0 18

Figure 3-4: PROGRAM MAIN COMPILED CODE

Main of Figure 3-2. The size of the task activation area is

16 (Ref 5). The storage for variable A is offset 17 words

from the beginning of the data area. Variable B begins one

word after the location of A. The compiler output for program

Main would be as seen in Figure 3-4. At run-time, storage

space for the task activation and variable areas are reserved

by the Increment command allowing an area of 18 words.

Integer one would be loaded on top of the stack by the

ILOADCONST. The ISTORE command would then cause the data on

top of the stack (one) to be stored in location 17 or the
23

AFIT/GCS/MA/81D-3

space reserved for A. Likewise, B would have the value two

stored in the location 18.

3.3.1 Nesting and Recursion

A separate storage area is created every time a new

procedure or block is activated (i.e. a call). The new

storage area, which consists of the task activation and

variables, can be referenced from the new active procedure.

In defining the nesting levels of a procedure, the nesting

level would be one plus the nesting level of the procedure

that performed the activation. If the nesting level of the

old data area was one then the new nesting level would of

course be two. This nesting level will be refered to in

terms of the activation frame.

With a storage area included for every procedure,

referencing the new data area is performed by adding the

offset (identifier's address) to the new base. The base is

set to the beginning of the storage area location for the

procedure (see Figure 3-5). Each time a procedure is

activated, a new activation frame is added. Program

variables defined in the main program are commonly referred

to as global variables. The global variables can be

referenced from any procedure whereas procedure variables can

only be referenced within the given stack activation frame

and are "invisible" to all other procedures.

The task activation area is i sed to link together each
24

-;A...........~

AFIT/GCS/MA/81D-3

STACK FRAME

1< T
VARIABLE D

VARIABLE C

TASK
I ACTIVATION

CALLED I DATA
PROCEDURE 1< NEW BASE

I VARIABLE B

VARIABLE A

TASK
ACTIVATION

MAIN DATAC PROCEDURE I

Figure 3-5: STACK WITH A CALLED PROCEDURE

activation frame. Whenever execution enters a new procedure

of the program, another activation record is allocated in the

stack frame and "pushed" on to the stack. In order to assure

returns to the calling procedure, link words are maintained

in each activation frame. One link shows the static linking

of the procedure. This link defines the nesting environments.

The second thread which is the dynamic chain provides

information necessary for the environment adjustments which

include the deallocation of the activation frame when the

executing procedure does a return. The information in the

task activation area is defined as the STACK-FRAME Control
25

- W 7'.

AFIT/GCS/MA/81D-3

Data in the appendix.

* 26

AFIT/GCS/MA/81D-3

4. DEBUGGER TOOL IMPLEMENTATION

This chapter describes the tools implemented for the ADA

debugger. It defines the interface between the Ada compiler

and debugger along with an indepth discussion of each tool.

4.1 The Compiler Output

The Garlington Ada compiler was modified to add a debug

switch which enabled the output needed from the compiler by

the debugger to be written to a file COMCOD.TXT. This file

has the pseudo-code, source-line table, and the symbol table.

This output is only obtained when the debug switch is set

during a compile.

4.1.1 Pseudo-code

The pseudo-code as described in Chapter 3 is of the form

OP LEVEL ADDR. This pseudo-code is used to perform the

simulated execution using procedure INTERPT.

4.1.2 Source-line Table

In order to implement the different breakpoint options,

a reference is needed between the source code and the

pseudo-code. This reference is made in the compiler and

output to the COMCOD.TXT file in the form of the source-line

table.

The source line table consists of entries which have an

index in the code table. Each entry in the source-line table

refers to the last entry of the code table which was

27

AFIT/GCS/MA/81D-3

generated by the previous source statement. For example, the

procedure Main (Figure 3-2) consists of seven lines of

source code. These seven lines of source code generate five

lines of pseudo-code (Figure 3-4). The source-line table

that would be generated for this program can be seen in

Figure 4-1. These figures show that from this source code

the compiler generates two instruction lines of pseudo-code

for source line five (A :-1), that is the pseudo-code entries

two (ILOADCONST) and three (ISTORE). The fifth entry into

the source-line table enables the debugger program to note

that after the execution of the pseudo-code indexed one, the

pseudo-code for the source line five will begin.

SOURCE CODE SOURCE
LINE INDEX LINE

1 0 PROCEDURE MAIN IS
2 0 VAR
3 0 A, B : INTEGER
4 0 BEGIN
5 1 A := 1;
6 3 B :2;
7 5 END MAIN;

Figure 4-1: SOURCE-LINE TABLE

4.1.3 Symbol Table

The compiler data structure that associates identifiers

with their attributes is called the symbol table. In order

for the debugger to provide the tools of modify and display,

the symbol table must be maintained to provide these
28

AFIT/GCS/MA/81D-3

attributes.

The compiler uses the symbol table each time an

identifier is referenced. The compiler generates new entries

for the symbol table when a new identifier is declared. In a

block-structured language like ADA, the scope of an

identifier is that of the block in which it is declared.

However, the same identifier can be declared several times

within the same block without conflict.

This method of scoping is of great value to programmers.

A new block of source may simply be inserted into an existing

program. If a new temporary variable is needed in the new

block, the variable may be declared within the block without

any concern that its name may have already been used in

another block.

The compiler handles this scoping by adding the

identifier to the symbol table upon entry of a new block.

When an exit of the block occurs, the identifier is removed

from the symbol table and may not be refered to again.

The debugger needs the identifier to provide the display

and modify tools. As each identifier is removed from the

symbol table it is stored in a table during the compile. This

table provides the attributes of each identifier. The

attributes included in this table are the string identifiers,

the type of the identifier (i.e.integer,constant), the

29

AFIT/GCS/MA/81D-3

address or value, and the scope that the identifier was

defined in. By saving the identifier in this table, the

identifier is not thrown away by the compiler. On completion

of the compile, this new symbol table is written to the file

COMCOD.TXT for use by the debugger if the debug switch is

* set.

4.2 The Debugger Tools

Only a subset of the tools specified by the MAPSE were

6 implemented as part of this thesis effort. The tools that

were omitted are conditional breaks, display and modify

constants, timing statistics, and the full implementation of

the jump tool. These tools were ommitted due to time

constraints. The tools that were included in the development

of the debugger are as follows:

4.2.1 Breakpoints

The breakpoint tool was implemented to stop the program

execution prior to the source line that the user requested.

Once the breakpoint condition has been met, the user would

have control of the program at the requested source line and

could request any of the other tools offered by the debugger

program or to continue until the breakpoint condition was met

again.

To enable the user to set breakpoints, the program sends

a message to the users terminal prior to execution of the

pseudo-code. The user would then be able to specify the
30

AFIT/GCS/MA/81D-3

source line at which simulation by the degugger should stop

and return control. Checks were Implemented in the breakpoint

code to make sure that the breakpoint specified by the user

was valid. For example, the user might mistype the source

line number or may specify a line number that was not

included in the source line table.

Once a breakpoint is set, the debugger program would

continue execution of the pseudo-code. A check is made each

time a new line of code is retrieved. The first check is

performed by finding the source line that generated the

indret vlnfed-oe from the source-line table. isteoprdToe

curent vlinfed-oe from the source-line table. isteoprdte

the set breakpoint. If the index value matches the

breakpoint, control is returned to the user, otherwise the

new line of code is executed.

4.2.2 Single Step

The single step tool was implemented to stop the program

execution prior to each new source line encountered. Since

the single step stops prior to every new source line, the set

breakpoint condition would be of no value. The single step

tool therefore turns off all breakpoints if previously

def ined .

Once the single step condition has been met, that is

pseudo-code for the next source line is encountered, the user

would have control of the program. The user could then
3'

AFIT/GCS/MA/8 1D-3

request any of the other tools offered by the debugger

program or continue in the single step mode.

To enable the user to select the single step mode, the

program sends a message to the user's terminal prior to

execution of the pseudo-code. The user would then be able to

specify the single step option. The user would also be able

to specify the single step option when a breakpoint was

encountered. Selecting the single step option at this point,

however, would turn off the breakpoint.

Once the single step option is set, the debugger willI continue execution of the pseudo-code. A check is made each

time a new line of pseudo-code is retrieved. The index to

this code is compared to the breakpoint value. The breakpoint

value is set to the index value in the source-line table each

time a new source line is encountered. If a breAkpoint

matches the current pseudo-code index then control would be

passed to the user, otherwise the new line of pseudo-code is

executed.

The single step tool stops execution prior to each new

source line. When a procedure or function is encountered, the

single step tool will stop on the first line of source code

of that procedure or function. When a return is encountered

for the procedure, the single step tool will stop on the

source line following the call.

32

AFIT/GCS/MA/81D-3

4.2.3 Multi-step Execution

The multi-step tool was implemented to stop the program

execution after a user specified number of source lines of

code had been executed. Like the single step tool, the

multi-step tool turns off all breakpoints if any were

previously defined.

The user may specify the multi-step option prior to the

execution of the program, after a breakpoint condition, or

after a single step condition has been met. When the

multi-step option is selected, the user must specify the

number of steps to be executed before the program continues

to execute.

Once the number of steps have been specified, the

debugger program would continue execution of the pseudo-code.

A check is made each time a new line of pseudo-code is

encountered to determine if it is the beginning of a new

source line. This check is done by comparing the index to the

pseudo-code table to the source-line table. If there is a

match, a line-number counter is incremented. If this counter

matches the user's specified number of steps, control passes

back to the user, otherwise execution continues.

4.2.4 Trace

The trace tool was implemented to show the user all

changes that are made to program variables during execution.

The trace tool can be selected prior to execution or at any
33

AFITIGCS/MA/81D-3

break which occured as the result of a breakpoint, single

step, or multi-step condition being met. When the user

selects the trace option, the trace flag is set to true.

When a store command is performed (i.e.ISTORE), the data

item on top of the stack is placed into the location reserved

for the variable by the method described in the section Stack

Implementation of Chapter 3. If the trace flag is true, the

new value for the variable is also displayed to the user.

Displaying just values to the user would leave it to the

user to determine which identifier each value of the trace

refered to. To avoid this annoyance, the debugger program

displays the string representation for the identifier along

with the new value. In order to display the correct string

representation, the debugger program must determine the frame

level, base, and address (offset) for the identifier being

modified. After these items have been determined, the string

representation is found in the symbol table based on the

offset and level being altered. The string value found in the

symbol table is then displayed to the user along with the

identifier's new value.

4.2.5 Jump

The Jump tool was implemented to allow the flow of the

program to be modified. The debugger jump option modifies

the program counter to the user specified value.

34

AFIT/GCS/MA/81D-3

The user may specify the jump option after a breakpoint,

single-step, or multi-step condition has been met. When the

jump option has been selected, the user must specify the

source line number that the execution will continue on.

Once the source line number has been specified, the

debugger program performs a check to determine if the line

number given is within the range of possible values for the

source program being executed. If the specified number is not

in range, the debugger will default to the last line of code

and set the termination flag.

The jump option only supports a jump within the current

level of execution. The debugger program provides no checks

for jumps outside the current level of execution. Checks were

not implemented because of a lack of time to finish this

necessary function. These checks are necessary since a jump

outside the current level of execution would cause two

possible errors.

The first error that could occur would be a jump into a

procedure which has not been called yet or does not exist on

the stack. Since the stack frame for this procedure is not

initialized, all addressing of variables would be wrong.

The second type of error that could occur would be a

jump into a procedure that is initialized within the stack

but at a different level. Again, this error would cause

35

(AFIT/GCS/MA/81D-3

addressing errors as well as errors of deactivation of stack

frame levels.

These errors could be removed by incrementing or

decrementating the stack based on the location of the jump.

Incrementing or decrementing could be done easily by issuing

a dummy operation Call or Return for the procedure. Problems

would occur using this method, however. In a block structured

language such as ADA, the dynamic and static linking would

have to be modified. This modification would vary based on

the level for which the jump is intended for. Becuase of

these problems, the jump option was not further implemented.

4.2.6 Display Values

The Display value tool was implemented to display

specified program identifiers ad their values to the user.

The display tool can be selected at any break which occured

as the result of a breakpoint, single step, or multi-step

condition being met.

Once the debugger has received the display request, the

user must specify the identifier to be displayed. The

debugger program searches the symbol table as a check to make

sure that the identifier exists. The debugger program also

checks to determine if the specified identifier is defined in

more than one level. If the identifier does not exists in at

least one level, the debugger will display a message to the

user that the identifier requested does not exist.
36

- C.- -.. ,. - - -~ -.IMF

AFIT/GCS/MA/81D-3

Once the debugger has determined that the variable

exists in at least one level, the stack area is searched and

compared at each frame level for the specified identifier.

When the identifier has been found, its value along with its

string representation and frame number is displayed. The

debugger also checks for identifiers that are defined as

cons tants*

If the identifier's block has not been activiated, the

debugger will display the procedure name and the identifier

with the message that the identifier has not been defined. If

the identifier is defined in more Clian one environment or

resides in a recursive procedure, all current values will be

displayed.

4.2.7 Modify Values

The Modify value tool was implemented to allow the

modification of program identifier values. The modify tool

can be selected in the same manner as the display tool.

Once the debugger has received the modify request, the

user must specify the identifier to be modified. The debugger

program searches the symbol table as a check to make sure

that the identifier exists. The debugger program also checks

to determine if the specified identifier is defined in more

than one level. If the variable does not exist in at least

one level, the debugger will display a message to the user

stating that the identifier requested is not currently
37

AFIT/GCS/MA/8ID-3

defined. This could occur if the procedure where the

identifier is defined in not been activated yet or has been

deactivated. If the identifier exists in more than one

environment, the debugger displays a message to the user

asking for the specific procedure for the modify.

Once the environment has been obtained, two more checks

are performed. The first check is to determine the type of

the identifier. Only integers and constants where implemented

since the compiler only supports these types at this time. If

the identifier is a constant a message is displayed to the

user stating that modifying constants is not allowed. The

compiler implemented constant values within the pseudo-code

and could not be modified without changing the values on the

pseudo-code file.

The second check was performed to determine if the

requested identifier within a given environment was defined

at more than one frame level (recursion). If the identifier

was defined at more than one frame, the user is asked to

specify which frame Is to be modified. A check is performed

to make sure the specified frame matches the frame the

identifier is defined in. If the user specified a frame that

the identifier is not declared in, a message is displayed to

the user.

After all checks have been performed, the user is

requested to specify the new value. This new value is then
38

AFIT/GCS/MA/81D-3

inserted into the proper frame and address of the stack.

4.2.8 Modify Program

Since it is not the function of the debugger to modify

the program, the modify program tool was implemented to show

the feasibility of linking to the Editor program.

The Modify program tool allows the Editor to be linked

so that the program could be modified. The Ada Editor has not

been developed so a dummy Editor program was linked to prove

that the linking would be performed.

The user may specify the modify program option after any

break which occurs as the result of a breakpoint, single

step, or multi-step condition being met. When the debugger

program receives the modify program option a link will be

made to the dummy Editor which will only terminate execution

after displaying a message that the link was made.

4.2.9 Output Stack

A dump tool was implemented to display all information

that resides in the stack area. This output option displays

the current process's stack history in the order of the first

implemented to the most recent frame implemented.

The user may specify the output stack option after a

breakpoint condition, single step condition, or multi-step

condition has been met. When the output stack option is

selected, the stack as well as the address location is
39

AFIT/GCS/%tA/81ID-3

displayed to the user.

4.2.10 Mkiscellaneous Tools

The debugger program provides two additional tools. A

help option and block entry/exit display are provided to

assist the user.

The help option specifies the options available to the

user. This option prints out the commands and their

functions.

The block entry/exit displays the block name to the user

each time a new block is entered and another display when an

exit of a block occurs. These features help the user keep

track of which block the program is currently executing.

40

r AFIT/GCS/MA/81D-3

5. RECOMMENDATIONS AND CONCLUSIONS

This Chapter describes the deficiences of the debugger

and also describes some areas where continuation efforts

could begin. The recommendations are divided into three

parts. The first section in the chapter describes

improvements to the debugger as the compiler changes. The

second section describes improvements which could be made to

the debugger tools. The third section describes suggested

improvements to the man-machine communications techniques.

The final section of this chapter provides conclusions of

this thesis effort.

5.1 Improvements as the Compiler Changes

The compiler used by the debugger needs to include

additional tool development. Implementation of types and

subtypes other than just integers need to be included into

the compiler and debugger. Separate compilation as well as

overloading should also be implemented.

As an Ada Programming Support Environment is developed

for AFIT, considerations must be made to permit all tools of

the Ada language to work together. Because of these ongoing

AFIT efforts, one central data base area should be

established and defined to integrate the compiler, debugger,

editor, as well as the linker loader.

41

- .- .- ----. ~-~--.-W

AFIT/GCS/MA/81D-3

5.2 Improvements to the Debugger

The current debugger allows only one breakpoint to be

set at a time. Implementing multiple breakpoints would be a

beneficial improvement. Multiple breakpoints could be

implemented easily using an array for each breakpoint.

Multiple options at any given time should be included as

an improvement. Currently only one option at any given time

can be requested. The multi-step and breakpoint tools would

be more useful if these tools could be implemented

concurrently.

The Jump option should be improved to allow jumps

outside the current activation frame. This improvement would

allow greater flexibility in modifing the flow of execution.

To allow this improvement, task activation and deactivation

will be needed as part of the jump option.

Finally, the Modify program option will need to include

the incorporation of the Editor program. When the Ada Editor

has been developed a link should be made from the Debugger to

the Editor for any program modifications.

5.3 Improvements to the Man-machine Communications Interface

A bottleneck remains which hinders the effectiveness of

the debugger. This bottleneck is the man-machine

communications. The debugger is not very good at

communicating with the user, which is a situation all to

42

c AFIT/GCS/MA/81D-3

common for the users of interactive systems.

Debuggers usually tend to be ineffective to the needs of

the user. There are two important causes of the

ineffectiveness of the debugger which is typical of

interactive computer systems.

The first cause is that the debugger commands are a

highly restricted artificial language designed specifically

for use by the debugger. If the user fails to use these

options or makes a mistake, however small, an error message

plus a request to rephrase would be the best resptonge that

could be added. This inability of the debugger as well as

current interactive systems to make such corrections is very

frustrating for the human user.

A second cause of the ineffectiveness of the debugger is

its poor performance in keeping track of the current context.

People can suspend one context temporarily, switching

conversation to a different context, and then going back to

the orginal context, but the debugger can not.

Currently, the debugger as well as most other

Interactive programs have the man-machine interaction take

place through typed input and output. The typical mode ..f

operation is for the user and the system to take turns typing

on a scroll of paper or scrolled display screen. However,

this type of man-machine communication is rapidly becoming

43

AFIT/GCS/MA/81D-3

outmoded by newer generations of powerful computers using

LISP, FORTH, and SMALLTALK. These machines are intended for

dedicated use by a single individual and feature a

high-resolution, graphic display, as well as a conventional

keyboard. This allows the computer to provide multiple

independent output channels by dividing the screen into

windows, in addition to the two independent input channels of

keyboard and pointer (Ref 9 :90-147).

In addition to the usual character output, a graphics

screen can display line drawings or images and produce

attention effects such as highlighting the background of

certain areas of the screen. On the input side, a display

(object can often be referred to by pointing much more

efficiently than by a typed description (Ref I :20).

Using a graphic type screen, however; can cause

difficulties in the management of the screen resources. The

debugger output could divide the screen into windows which

could be rearranged on the display like sheets of paper. This

type of organization would be attractive since it allows a

large amount of related information to fit onto the screen at

one time. Parts of the windows could be selectively obscured

and reused for other displays. In the managemont of these

windows the user should always be able to arrange windows to

see the parts of the displays that interest him. The debugger

should also provide automatic position displays so the users

44

AFIT/GCS/MA/81D-3

would not need to intervene. Finally, the screen should be

exploited to provide the largest possible working space for

the user while at the same time be kept simple enough to

avoid confusion (Ref I1. 28).

In addition to the graphic displays, other recent

computer technology advances have been made . One of the more

recent advances is in the area of pointing devices such ask the joystick, mouse, or cat. These pointing devices allow the

user to control the position of a cursor or the display

screen to select specific objects that were displayed

earlier. This facility would enable the user to add quick

debugging commands (Ref 9 :9 8).

Finally, a method for flexible parsing would greatly

enhance the man-machine interaction. Most current parsing

systems do not allow for the possibility that the input might

deviate slightly from the internal grammer and yet still be

useful. An interface which discards all ungrammatical input

appears very cumbersome to the user. Implementing a flexible

parser that would allow for reasonable deviations could be an

improvement. By allowing one or more ungrammatical inputs

into the grammatical input would improve the communications

between the user and machine (Ref 1 : 22).

5.4 Conclusions

Two significant conclusions have been developed as the

result of this thesis effort. The first conclusion relates to
45

AFIT,/GCS/MA/81D-3

current software debugging information. The second conclusion

relates to the DoD specified support environment.

In acquiring information related to current debugging

techniques, it was very interesting to note that debugging

receives only brief mentions in much of the literature. When

mentioned, debugging is often mixed with testing which is a

totally separate issue. This lack of information leads to the

conclusion that even though emphasis is needed on getting the

program right the first time, more emphasis is needed in

techniques and tools for the debugging of programs.

of efesehas recognized the need for a support environment

for the Ada language. This support environment makes Ada

mor thn noter"reliable enough" language. In addressing

thesuportenvronentaspart of Ada, DoD is establishing a

nwstandard for total software develpoment. The choices of

debggngtools which are to be included in the DoD's

debugerinclude all the tool capabilities that are available

in current interactive debugging technology. However, this

leads to the second conclusion. DoD has not gone far enough

in the specifications for the Ada environment. In the

specifications for an Ada environment, the human interface to

the computer should be emphasized not only for the debugger

but for all of the Ada support tools.

I' 46

AFIT/GCS/MA/81D-3

BIBLIOGRAPHY

1. Ball,Eugene. Breaking the Man-Machine Communications
Barrier. Computers 14 (1981), 19-29.

2. Computer Science Corporation. ADA Intregrated
Environment System Specification. 1981.

3. Control Data Corporation. Fortran Version 5 Reference
Manual. Sunnyvale, California, 1979

4. Defense Advanced Research Projects Agency. ADA
Integrated Environment. Department of Defense, Washington,
D.C., 1981.

5. Garlington, Alan R. Preliminary Design and Implementation
of an ADA Pseudo-Machine. Master Th., Air Force Institute of
Technology, March 1981.

6. Halpern, M. Computer Programming: The Debugging Epoch
Opens. Computers and Automation 14 (1965), 28-31.

7. Honeywell Information Systems. Debug and Trace Routines;
Series 600/6000 GCOS. 1972

8. Honeywell Information Systems. Programmer's Manual
Volume III - Commands and Active Functions, Multics Software.
1973

9. Tesler, Larry. The Smalltalk Environment. Byte 16
(1981), 90-147.

10. TRW Defense and Space Systems Group. Computer Program
Product Specification For Jovial Interactive Debugger.
Redondo Beach, California, 1980

11. VanTassel, Dennie. Program Style, Design, Efficiency,
Debugging, and Testing (Second Edition). Prentice-Hall, INC.,
New Jersey, 1979.

47

AFIT/GCS/MA/81D-3

I. APPENDICES

I.1 Peculiarities of DEC-10 Pascal

Since there exists only a partial ADA compiler, Pascal

was used to develop the debugger program. The debugger

program was written using DEC-10 Pascal. The DEC-10 has

features that differ from other versions of Pascal.

In DEC-10 Pascal, the terminal is a separate input

channel from the standard file INPUT but is treated just as

other input character files are, including a look-ahead file

window feature. However, there are some peculiarities and

drawbacks to using Pascal.

It is not possible to read any character, string, or

number from the terminal without terminating a group of such

numbers with a return, since this method is the only way that

data is passed from the DEC-10 terminal line buffer to a

Pascal program. Because the Return character will be the next

following character after the data is read, a READLN(input)

will not be satisfied with that terminating Return since the

look-ahead character after the Return will not be read yet.

Thus the READLN statement can never be used in conversational

programming from the TTY, since Pascal will wait for still

another input character beyond the Return. In addition, this

additional input character is not passed to Pascal until

another Return is typed since only lines are passed to

Pascal, not characters. Thus the statement, READLN(TTY,A,B),
48

* - - ------- ---- -- ---- '- - ;--r

AFIT/GCS/MA/81D-3

will wait for a second Return after reading A and B from the

line passed by the first Return. To avoid this problem in

interactive programming with the DEC-10 Pascal, the READ

statement is used in all cases, rather than the READLN

statement when reading from TTY.

1.2 DEC-10 Character Input

The DEC-10 Pascal system automatically puts a character

in the look-ahead window of the file TTY when any program

starts that will utilize reads from the terminal. At the time

A DEC-10 Pascal program is executed from the monitor, the

program is linked and loaded and types an asterisk to

indicate that it is ready for that first character of input.

This is usually just a Return (which, of course, becomes a

space when passed to Pascal).

This space in the file window is usually irrelevant if

the first data to be entered from the terminal is to be a

number of type Integer or Real, since leading spaces are

always ignored. However, if the first data in the program is

to be a character input from the terminal, it will be that

space in the look-ahead buffer that is used unless this space

is read and discarded. Consider the program of Figure 5-1.

Assuming that the user runs the program of Figure 5-1 by

typing "EX EXAMPLE.PAS", when the program is loaded, the

output to the TTY unit would be 'W'. The user would then type

a return to start the execution followed by "ABC". The
49

AFIT/GCS/MA/81D-3

PROGRAM EXAMPLE;
VAR A, B, C : CHAR;
BEGIN
READ(TTY,A,B,C);
WRITELN(TTY,'A -',A);
WRITELN(TTY,'B =',B);
WRITELN(TTY,'C -',C);
END.

Figure 5-1: INCORRECT PROGRAM EXAMPLE

PROGRAM EXAMPLE2;
VAR A, B, C, DUMMY : CHAR;
BEGIN
READ(TTY,DUMMY);
READ(TTY,A, B, C);
WRITELN(TTY,'A -',A);
WRITELN(TTY,'B -',B);
WRITELN(TTY,'C -',C);
END.

Figure 5-2: CORRECT PROGRAM EXAMPLE

program output to the TTY unit would be:

A=
B A
C=B

because the TTY window was loaded with the first character, a

space, which was then read into variable A. Then variables B

and C were loaded with the characters A and B, respectively.

In any program where the first data to be read will be a

character, a read must be made to throw away that extra

50

--

AFIT/GCS/MA/81D-3

window character which is entered first. *

The program of Figure 5-2 illustrates the correct use of

the look-ahead character.

1.3 Linking Externally Compiled Programs

Linking of externally compiled programs can be performed

using the DEC-10 Pascal. The programs to be linked must be

declared as "EXTERN" in the main program. The main program is

compiled as usual. The separately compiled program must have

the .REL file present. The execute command then must include

the main program filename as well as the separately compiled

program filename.

51

STACK-FRAME CONTROL DATA

1.4 STACK-FRAME CONTROL DATA

STATIC LINK :The static link records the textual

nesting level of the program as it was orginally written. it

is used for run-time addressing of variables and objects (Ref

5 :29).

DYNAMIC LINK The dynamic link marks the base of the

calling procedure's activation record. It is used to

deallocate stack space upon completion of the procedure's

execution (Ref 5 :29).

PROGRAM COUNTER :Storage space is provided for the

current value of the processor's working registers. This is

necessary since a task may have to give up its processor at

any time (Ref 5 :29).

TASK FLAG The task flag is a Boolean variable that

indicates whether or not the stack frame is a task. It is

used to indicate task boundaries when processing run-time

exceptions raised in the program (Ref 5 : 29).

ACTIVE NESTED TASK COUNTER :The active nested task

counter is used to record the number of nested tasks

currently active in the given stack frame (Ref 5 : 29-30).

WAITING FLAG : The waiting flag is a boolean variable

that indicates whether or not the parent task is waiting to

terminate its execution (Ref 5 : 30).

52

STACK-FRAM4E CON~TROL DATA

EXCEPTIONS This is not implemented in the Garlingron

compiler yet. This word will be used to record information

on exceptions handled within the block (Ref 5 :30).

PRIORITY This word is a run time record of the task's

priority (Ref 5 30).

TOP OF STACK : The top-of -stack control word provides

temporary stroage for the processor's "T" register (Ref 5

30).

BASE : The base control word provides temporary storage

for the processor's "'BASE" register (Ref 5 : 30).

LINK When a task is entered into a queue, the link

control word points to the next task waiting in the queue

(Ref 5 : 30).

HEAP :The heap postion provides temporary storage for

the processor's "HEAP" register (Ref 5 : 30).

DATA LOCK :This boolean variable indicates whether or

not the task frame is currently being accessed by another

task (Ref 5 : 30).

CALLER :When a called task executes an accept statement

for a particular entry, a pointer to the base of the accepted

caller is stored in this word (Ref 5 : 31).

RETURN :This control word is used to record the return

53

STACK-FRAME CONTROL DATA

value of the program counter during a procedure call (Ref 5

31).

ENTRY : This word records the number of entries declared

in the current activation, and is used to compute the amount

of space required for entry frame control data (Ref 5 :31).

54

... .~ .. ~ .~. .. .-

INSTRUCTION SET

1.5 INSTRUCTION SET

RELATIONAL OPERATORS

EQUAL, GTR, GTREQ, LESS, LESSEQ, ZXOR, ZAND, ZOR, ZNOT

INTEGER ARITHMETIC OPERATORS

IADD, IDIV, IMULT, INEGATE, ISUB, IMOD, IREM

SINGLE-WORD LOADS AND STORES

ILOAD, ISTORE, ILOADCONST

TASKING OPERATORS

CALLENTRY, ACCEPT, RELEASE, TERMINATE, ENTILOAD,

ENTISTORE

INPUT/OUTPUT OPERATORS

SPUT, IPUT, IGET

MISCELLANEOUS INSTRUCTIONS

CALL, PARAMSHIFT, RETURN, JMP, JMPT, JMPF, INCT

55

COPIE USR' GUD

1COMPILER USER'S GUIDE

This appendix describes the input accepted by the test

compiler used by the debugger and the output which results.

An example program is also included.

Input to the program is an Ada text file whose

constructs have been included as part of the implemented

subset. The language constructs used to compose input

programs are listed below.

1. Integer variables. Number declarations and

variable initializations are not implemented.

2. Package declarations.

3. Procedures and functions with parameters.

4. Task declarations.

5. Selected components may be used to open
visibility to objects that are within scope but
which are not directly visable.

6. Most integer arithmetic or Boolean expressions
may be used including those using short circuit
conditions. (REM, **, &, IN are not implemented)

7. The following statements may be used:

a. Assignment

b. Procedure, function or entry calls

c. Exit

d. Return

e. IF THEN ELSEIF ELSE

f. Accept

h. Loops (except FOR loop)

56

COMPILER USER'S GUIDE

The output of the program is dependent on a specially

defined pragma. This pragma was added to allow more direct

control of the program throughout its development. Its format

is:

PRAGMA TOGGLE (<OPTIONSTRING>),

where <OPTIONSTRING> is composed of selections from the

following list of options: EXECUTE, TRACESTORE, PRINTCODE,

TRACEPARSE, TRACETOK, AND DEBUG. Multiple selections must be

separated by commas.

All of these options are initially off. To select an

option, list it in an option string, and the compiler's

output will be as defined below:

EXECUTE; If no errors are detected in the input program,

the program will be executed.

TRACESTORE: TRACESTORE will do nothing unless EXECUTE is

also selected. If EXECUTE is selected, each value stored

during execution of an ISTORE or ENTRISTORE command will be

printed.

PRINTCODE: The code generated by the compiler is

formatted and printed.

TRACEPARSE: Each transition or reduction made by the

parsing automation is printed. This listing is fairly long

even for a short program.
57

COMPILER USER'S GUIDE

TRACETOK: The representation of each token passed from

the scanner to the parser is printed. This representation

consists of the token's vocabulary index as output from the

automatic parser generator.

DEBUG: The code (which is In the form of integer),

symbol table, and line number table is written to file

COMCOD.TXT. The following example illustrates the effect of

selecting the DEBUG option given a simple input program.

CODE

OP LV ADDR

23 0 1

22 0 20
13 0 1
14 0 17
13 0 2
14 0 18

13 0 3
14 0 19
40 0 5
37 0 32
37 0 65
37 0 32

37 0 61
37 0 32
12 0 17
39 1 0

40 0 5
37 0 32
37 0 66

37 0 32
37 0 61

37 0 32
12 0 18
39 1 0

40 0 5
37 0 32
37 0 67
37 0 32
37 0 61
37 0 32

58

COMPILER USER'S GUIDE

12 0 19
39 1 0
27 0 0

SOURCE CODE

-1 --TEST
-1 PRAGMA TOGGLE (DEBUG);
-1
-1 PROCEDURE MAIN IS
-1 A, B, C :INTEGER;
0 BEGIN
I A :- 1;
3 B =2;
5 C :-3;
7 PUT (tA -) PUT LINE (A);

15 PUT C"B -) PUT-LINE (B);
23 PUT ("C -) PUT LINE (C);
31 END MAIN;

SYMBOL TABLE

B 1 0 18
A 1 0 17
C 1 0 19
MAIN 3 0

59

(DEBUGGER USER'S GUIDE

1.7 DEBUGGER USER'S GUIDE

This appendix describes the input accepted by the

debugger and the output which results by executing the

debugger program. Several example debugger options are

included.

INPUT: Input to the debugger program is the file

'COMCOD.TXT' which has been generated by the Ada compiler.

The specific format of this file can be seen in the Ada

Compiler User's Guide. Additional interactive input is

required and is dependent on specially defined options. These

options are:

B (BREAKPOINTS): Sets the breakpoint at specified source

lines.

T (TRACE): Sets trace request.

S (SINGLE STEP): Sets single step execution.

N (MULTI-STEP): Sets multiple step execution.

D (DISPLAY): Displays user specified identifiers.

M (MODIFY VALUE): Modifies user specified identifier

value.

O (OUTPUT STACK): Dumps current stack.

J (JUMP): Changes the point of execution.

60

DEBUGGER USER'S GUIDE

P (MODIFY PROGRAM): Links to "Dummy" Editor.

C (CONTINUE): Continue execution using previous option.

The following examples illusrate the effect of selecting

each of the debugger options and show what additional

information is required from the user for the following

program.

I --TEST PROGRAM USED FOR DIPLAYING DEBUGGER OPTIONS
2 PRAGMA TOGGLE (DEBUG);
3
4 PROCEDURE MAIN IS
5 A, B, C : INTEGER;
6 BEGIN
7 A :- 1;
8 B 2;
9 C 3;
10 PUT (" A - "); PUT LINE (A);
11 PUT (" B - "); PUT LINE (B);
12 PUT (" C - "); PUT LINE (C);
13 END MAIN;

61

- -. - - --

DEBUGGER USER'S GUIDE

S SINGLE STEP AND H HELP OPTION

*S

THE PROGRAM IS NOW IN THE SINGLE STEP MODE
AFTER EVERY SOURCE LINE EXECUTED THE DEBUGGER WILL STOP

CURRENT LINE IS:
7 A := 1;

*H

YOUR OPTIONS FOR THE DEBUG PROGRAM ARE

SET A BREAKPOINT, TYPE: B

TRACE, TYPE: T
EXECUTE N STATEMENTS AT A TIME, TYPE: N

SINGLE STEP, TYPE: S

JUMP TO SOURCE LINE, TYPE: J
DISPLAY A VALUE, TYPE: D

MODIFY THE PROGRAM, TYPE: P

CONTINUE EXECUTION, TYPE: C

QUIT EXECUTION, TYPE: Q
MODIFY A VALUE* TYPE: M
OUTPUT THE STACKTYPE: 0

62

DEBUGGER USER'S GUIDE

T TRACE

*T

A IS NOW SET AT 1
B IS NOW SET AT 2
C IS NOW SET AT 3

MAIN EXIT

63

DEBUGGER USER'S GUIDE

D DISPLAY

*S

THE PROGRAM IS NOW IN THE SINGLE STEP MODE
AFTER EVERY SOURCE LINE EXECUTED THE DEBUGGER WILL STOP

CURRENT LINE IS:
7 A := 1;

*C

CURRENT LINE IS:
8 B :=2;

*D

TYPE IN THE IDENTIFIER YOU WISH TO DISPLAY
A EQUALS I DECLARED AT FRAME 1

IF YOU WANT TO DISPLAY ANOTHER IDENTIFIER TYPE: C
IF NOT TYPE IN ANY CHARACTER

*N

CURRENT LINE IS:
9 C :- 3;

64

DEBUGGER USER'S GUIDE

M MODIFY

*S

THE PROGRAM IS NOW IN THE SINGLE STEP MODE
AFTER EVERY SOURCE LINE EXECUTED THE DEBUGGER WILL STOP

CURRENT LINE IS:
7 A 1;

*C

CURRENT LINE IS:

8 B :- 2;

TYPE IN THE IDENTIFIER YOU WISH TO MODIFY
*A

TYPE IN THE NEW VALUE
*99

IDENTIFL.R MODIFIED

IF YOU WANT TO MODIFY ANOTHER IDENTIFIER TYPE: C
IF NOT TYPE IN ANY CHARACTER

*N

CURRENT LINE IS:
9 C :- 3;

*D

TYPE IN THE IDENTIFIER YOU WISH TO DISPLAY
*A

A EQUALS 99 DECLARED AT FRAME 1

IF YOU WANT TO DISPLAY ANOTHER IDENTIFIER TYPE: C
IF NOT TYPE IN ANY CHARACTER

*N
65

DEBUGGER USER'S GUIDE

CURRENT LINE IS:
10 PUT ("A -"; PUTLINE (A);

A- 99

66

DEBUGGER USER'S GUIDE

O OUTPUT

THE PROGRAM IS NOW IN THE SINGLE STEP MODE
AFTER EVERY SOURCE LINE EXECUTED THE DEBUGGER WILL STOP

CURRENT LINE IS:
7 A :-1;

*0

1 0
2 0
2 0
4 1

5 0
6 0
7 0
8 5
9 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

CURRENT LINE IS:
8 B:-2;

67

pow--4

DEBUGGER SOURCE LISTING

1.8 DEBUGGER SOURCE LISTING

PROGRAM DEBUGGER (INPUT:/,OUTPUT);
(* PROGRAM DEBUGGER IS THE DEBUG PROGRAM FOR THE ADA LANGUAGE
WHICH USES THE COMPILER GENERATED BY CAPT ALLAN GARLINGTON.

THE OPTIONS OFFERED BY THIS PROGRAM ARE:
1. BREAKPOINTS
2. TRACE
3. MULTISTEP EXECUTION
4. SINGLE STEP EXECUTION
5. MODIFY VALUES OF IDENTIFIERS
6. DISPLAY VALUES OF IDENTIFIERS
7. OUTPUT THE STACK

THE PROGRAMS USES THE FOLLOWING PROCEDURES AND FUNCTIONS
1. FINDBASE : FUNCTION, RETURNS BASE OF STACKFRAME
2. GOCOMPARE PROCEDURE, COMPARES INPUT STRING TO

SYMBOL TABLE
3. REINITILIZE : PROCEDURE, RESETS DEBUG COMMANDS
4. GO BREAKPOINT : PROCEDURE, SET BREAKPOINTS
5. GO TRACE : PROCEDURE, SETS TRACE REQUEST
6. GO EXECUTEN : PROCEDURE, SETS MULTISTEP EXECUTION
7. GO-DISPLAY : PROCEDURE, ALLOWS FOR DISPLAYS OF

IDENTIFIERS
8. GO MODIFY PROGRAM : PROCEDURE, LINKS TO "DUMMY" EDITOR
9. GO OUTPUT S : PROCEDURE,OUTPUTS OF STACK

10. GO SINGLE STEP : PROCEDURE, SETS SINGLE STEP OPTION
11. GOJUMP : PROCEDURE, ALLOWS FOR JUMPING OVER CODE
12. CHECKFORBREAK : PROCEDURE, CHECKS FOR BREAKPOINT

CONDITION
13. CHANGE VALUE : PROCEDURE, MODIFIES THE IDENTIFIER VALUES
14. MORETHAN ONE : PROCEDURE, DETERMINES WHICH IDENTIFIER

(LEVEL) TO BE MODIFIED
15. GO MOD VALUE : PROCEDURE, SET UP FOR MODIFING ID'S VALUE
16. OPTIONS : PROCEDURE, SETS AND RESETS DEBUGGER OPTIONS
17. INTERPRET : PROCEDURE, SIMULATES PSEUDO-CODE EXECUTION
18. INITILIZE : PROCEDURE, SETS FLAGS,

READS IN COMPILER GENERATED CODE

INPUT : THE INPUT TO THE DEBUGGER PROGRAM COMES FROM TWO
SOURCES. THE FIRST SOURCE IS THE FILE GENERATE FROM THE
COMPILER. THIS FILE (COMCOD.TXT) HAS THE FOLLOWING

68

DEBUGGER SOURCE LISTING

INFORMATION:
1. PSEUDO-CODE OP LEVEL ADDR
2. SOURCE-LINE-TABLE LINE NUMBERS(CODEX)
3. SYMBOL-TABLE : STRING TYPE LEVEL OFFSET

STRING TYPE LEVEL VALUE

THE SECOND SOURCE OF INPUT COMES FROM THE USER DIRECTLY
FROM THE SCREEN. THE USER WILL INPUT THE DESIRED OPTIONS
BASED ON THE PROGRAM PROMPTS.

***NOTE ON THE INPUTS- DEC-10 PASCAL USES A BUFFER AREA FOR
***CHARACTER INPUT, THEREFORE FOR EVERY CHARACTER READ A
***DUMMY READ HAS TO BE PERFORMED TO MANAGE THIS.

OUTPUT : THE OUTPUT FROM THE PROGRAMS ARE WRITTEN TO THE
SCREEN FOR THE USER. THE OUTPUTS ARE EITHER THE PROMPTS FOR
THE USER,THE TRACE OR THE WRITES FROM THE PROGRAM BEING
EXECUTED.

CONST

(* CONSTANTS USED BY THE COMPILER *)

CODEXMAX - 2500; (*LENGTH OF THE CODE ARRAY*)
LINELENGTH - 120; (*MAX LENGTH OF AN INPUT LINE*)
PAGESIZE - 63; (*NUMBER OF LINES PRINTED / PAGE*)
MEMORYSIZE - 2037; (*SIZE OF SIMULATOR'S STACK MEMORY*)
TASKFRAMESIZE - 17; (*SIZE OF A PROC/TASK STACK FRAME*)
ENTRYFRAMESIZE - 3; (*SIZE OF AN ENTRY'S STACK FRAME*)
TABSIZE - 64; (*SIZE OF SYMBOL TABLE LIST*)
MAXSSTORE - 70; (*MAX STRING LENGTH OF VARIABLES*)
NUMPROCESSORS - 3; (*NUMBER OF SYSTEM PROCESSORS*)
PRIMARYPROCESSOR - 1; (*PROCESSOR WHICH INITIZES SYSTEM*)
EXECUTIONLENGTH - 5; (*NUM OF INST EXECUTED/TIMESLICE*)

(* DESCRIPTION OF THE TASK ACTIVATION RECORD *)

SLINKO - 0; DLINKO - 1; PCO - 2; TASKFLAGO - 3;
ANTO - 4; WAITO - 5; EXCEPTO - 6; PRIORITYO - 7;
TOFF - 8; BASEO - 9; LINKO - 10; HEAPO - 11;
DATALOCKO - 12; CALLERO - 13; RETURNO - 14; ENTRYO - 15;
SUBO - 16;

(* DESCRIPTION OF THE ENTRY FRAME *)

69

DEBUGGER SOURCE LISTING

EGATEO - 0; EADDRO 1 ; EQUEO 2;

TYPE

PRIORITIES 0.5

ADDRESSRANGE -O..MEMORYSIZE;

OPERATION (*SE PROCEDURE INTERPRET FOR A FUNCTIONAL
DESCRIPTION OF EACH OPERATOR*)

(*RELATIONAL OPERATORS---------------------
EQUAL, GTR, GTREQ, LESS, LESSEQ,
NOTEQ, ZIN, ZNOT, ZXOR, ZAND, ZOR,

(*INTEGER (SINGLE WORD) OPERATORS---------
ILOAD, ILOADCONST, ISTORE, IADD,
ISUB, IDIV, IMULT, INEGATE, IMOD, IREM,

(*REAL OPERATORS---------------------------
RLOAD, RLOADCONST, RSTORE, RADD,
RSUB, RDIV, RMULT, RNEGATE,

(*TASKING OPERATORS------------------------
ACTIVATE, CALLENTRY, ACCEPT, RELEASE, TERMINATE,
ENTILOAD, ENTISTORE, KILLTASK,

(*1/0 OPERATORS----------------------------
IGET, IPUT, SPUT,

(*MISCELLANEOUS OPERATORS------------------
INCT, JMP, JMPF, JMPT, RAISE, RETURN, ZNEW, CONCAT, EXPON
CALL, DATA, PARAMSHIFT);

INSTRUCTION -RECORD

I OP CODE I LEVEL I ADDRESS I

OP :OPERATION;
LEVEL : INTEGER;
ADDR :INTEGER;

END (*INSTRUCTION*);

MACHINEDESCRIPTION - RECORD
(REGISTERS *) PC,

HEAP,
BASE,
T :ADDRESSRANGE;
IR :INSTRUCTION;

(HOUSE KEEPING*) LEXICAL :ADDRESSRANGE;
STATE : (BUSY,IDLE);
CURRENTJOB : ADDRESSRANGE;

70

DEBUGGER SOURCE LISTING

ICOUNT : INTEGER;
END; (*MACHINE DESCRIPTION*)

(* IDENTIFIER INFORMATION GENERATED BY THE COMPILER *)
SYMREC - RECORD

STRINGLEN : INTEGER; (*LENGTH OF IDENTIFIER*)
STRINGSTORE : ARRAY[I..MAXSSTORE] OF CHAR;
TYPES : INTEGER; (*I-VAR,2-CONST,3-PROC*)
SYLVL : INTEGER; (*LEVEL IDENTIFIER DECLARED*)
SYOFFSET INTEGER; (*ADDRESS OFFSET FROM BASE*)
SYVALUE : INTEGER; (* VALUE FOR CONSTANTS*)
END; (* SYMREC*)

KINDS - (SUBP,VARIABLE,PARAM,TYPENAME,LABELNAME,XSTNG,
STANDARD,PACKAGE,TASK,ENTRY,UNDEFINED);

CODESOURCE - RECORD
(* USED TO RELATE SOURCE LINE TO PSEUDO-CODE *)
CODENUM INTEGER;
SOURCECODE : ARRAY [I..50] OF CHAR;

END;

VAR

ZDATE : PACKED ARRAY [1..9] OF CHAR;
ZTIME : INTEGER;

(* CODE GENERATED FROM THE COMPILER*)

CODE : PACKED ARRAY [O..CODEXMAX] OF INSTRUCTION;
CODEX INTEGER; (*INDEX TO ARRAY 'CODE'. POINTS TO

THE LAST INSTRUCTION ADDED TO THE ARRAY*)

(* ARRAY OF MATCHING ID'S FOR DISPLAY AND MODIFY PROCEDURES*)

MATCHTABLE : ARRAY[I..TABSIZE] OF INTEGER;

(* LIST FOR THE SYMBOL TABLE *)

SYMTABLE : ARRAY [1..TABSIZE] OF SYMREC;

(* SAVE VALUE FOR BREAKPOINT GENERATION *)

PCI : ADDRESSRANGE;

71

DEBUGGER SOURCE LISTING

(* INPUT FILE FROM THE COMPILER *)

INFILE : TEXT;

(* SOURCE LINE REFERENCE TABLE *)

LINENUMTABLE : ARRAY [0 .. 100] OF CODESOURCE;

(* BUFFER FOR INTERACTIVE READS OF CHARACTER STRINGS *)

BUFFER : ARRAY[l..MAXSSTORE] OF CHAR;

(* INDEX FOR SOURCE LINE BEING EXECUTED *)

SOURCELINECOUNT : INTEGER;

(* FLAGS USED TO STOP EXECUTION FOR CONDITIONS *)
TERMINATION, FIRSTPASS, TRACE,
STOPEXECUTION, SINGLESTEP, MULTISTEP : BOOLEAN;
BREAKPOINT : INTEGER;
CURRENTSTEP, NUMSTEPS : INTEGER;

(* RUN TIME STACK *)

S : ARRAY [l..MEMORYSIZE] OF INTEGER;
READY : ARRAY[PRIORITIESJ OF ADDRESSRANGE;
PROCESSOR : ARRAY[1..NUMPROCESSORS] OF MACHINEDESCRIPTION;
CURRENTPROCESSOR : INTEGER;
NEWPTR,TEMPTR,I,EFRAMEPTR,TEMPBASE : INTEGER;

(* FUNCTION FIND BASE

FUNCTION FINDBASE (LEV, TEMPBASE : INTEGER) : INTEGER;
(* FIND BASE FINDS THE BASE OF THE STACKFRAME *)
BEGIN
WHILE LEV > 0 DO
BEGIN
TEMPBASE :- S[TEMPBASE];
LEV :- LEV - 1

END; (*WHILE*)
FINDBASE :- TEMPBASE

END; (*FINDBASE*)

(* PROCEDURE GO COMPARE

72

DEBUGGER SOURCE LISTING
/

PROCEDURE GOCOMPARE;

(* COMPARE READS AN INPUT FROM THE TERMINAL
INTO THE BUFFER AND COMPARES THE STRING
TO THE SYMBOL TABLE. MORE THAN ONE MATCH
CAN OCCUR THEREFORE THE MATCHING SYMBOL
TABLE POINTERS ARE STORED IN THE ARRAY
MATCHTABLE FOR ALL MATCHES

VAR
CH : CHAR;

I, J, K : INTEGER;
MATCH BOOLEAN;

BEGIN
FOR K := 1 TO TABSIZE DO (* INITILIZE MATCHTABLE *)
MATCHTABLE [K] := 0;
FOR K := 1 TO MAXSSTORE DO (*INITILIZE BUFFER*)
BUFFER [K] := "

K := 1;
READ(CH); (*DUMMY READ*)
READ(BUFFER:I:[' ']);(*READ IN IDENT OR PROCEDURE STRING*)
FOR J :- 1 TO TABSIZE DO (* LOOP THRU SYMBOL TBL FOR MATCH*)
BEGIN
WITH SYMTABLE [J] DO
BEGIN
FOR I :- 1 TO MAXSSTORE DO
BEGIN
IF STRINGSTORE [1] 0 BUFFER [I] THEN
BEGIN
MATCH :- FALSE;
I :- MAXSSTORE;

END
ELSE
MATCH :- TRUE;

END; (*FOR*)
IF MATCH THEN
BEGIN
(*MORE THAN ONE IDENTIFIER COULD HAVE SAME STRING *)
MATCHTABLE (K] :- J; (*SAVE IN MATCH TABLE ALL MATCHES*)
K :- K + 1; (*ON DIFFERENT LEVELS *)
END;

END; (*WITH*)
END; (*FOR*)

END;(* COMPARE *)

(**** PROCEDURE REINITILIZE *******************************

73

DEBUGGER SOURCE LISTING

(*RESETS THE DEBUG COMMANDS AND VALUES WHEN THE MODE IS TO
BE CHANGED FROM ONE OPTION TO ANOTHER*)

PROCEDURE REINITILIZE;

BEGIN

SINGLESTEP : FALSE;
BREAKPOINT :- -2;
CURRENTSTEP :- -2;
MULTISTEP := FALSE;

END; (* REINITILIZE *)

PROCEDURE GOBREAKPOINT*************************************
*** **********

PROCEDURE GOBREAKPOINT;

(* BREAKPOINT : I. SENDS A MESSAGE TO THE USER
2. READS IN REQUESTED BREAKPOINT
3. CHECKS INPUT AS A VALID BREAKPOINT
4. SETS THE BREAKPOINT *)

VAR

BK : INTEGER;

BEGIN (- PROC BREAKPOINT *)

WRITELN(' TO SET A BREAKPONT ENTER SOURCE LINE NUMBER ");
WRITELN(' SOURCE LINE NUMBER MUST BE AN INTEGER VALUE ");
WRITELN;

READ(BK);
WRITELN;

IF BK > SOURCELINECOUNT THEN
BEGIN

WRITELN(' INPUT CAN NOT BE GREATER THAN ',SOURCELINECOU
WRITELN(' TYPE IN NEW NUMBER ");
READ(BK);
WRITELN

END; (* END IF - NEED ANOTHER CHECK *)

BREAKPOINT :- LINENUMTABLE [BK].CODENUM;

END; (* END GOBREAKPOINT *)

7
74

DEBUGGER SOURCE LISTING

(** GO TRAC*** *****

(*TURNS TRACE FLAG ON AFTER THE REQUEST IS MADE BY THE USER*)

PROCEDURE GOTRACE;

BEGIN

TRACE :- TRUE

END; (* END GOTRACE *)

(**** GO EXECUTEN ***

(* EXECUTEN SETS UP THE USFR REQUEST FUR MULTISTEP EXECUTION.
THIS ALLOWS THE EXECUTION OF "N" LINES OF SOURCE CODE TO

BE PERFORMED AND THEN A BREAK *)

f

K. PROCEDURE GOEXECUTEN;

BEGIN
MULTISTEP :- TRUE;

CURRENTSTEP :- 0;
WRITELN(' TO EXECUTE N STATEMENTS AND THEN BREAK ");
WRITELN(' ENTER THE INTEGER VALUE FOR HE NUMBER OF ");
WRITELN(' SOURCE LINES TO BE EXECUTED ");
READ(NUMSTEPS);

END; (*GOEXECUTEN*)

(**** GO DISPLAY ***************************************)
*** ***

(*DISPLAY ALLOWS THE USER TO SEE THE IDENTIFIERS VALUE

ON THE STACK *)

PROCEDURE GODISPLAY;
VAR
CH : CHAR;
I, J, K, L, NUM, TEMPBASE INTEGFR;
ANOTHER : BOOLEAN;

DEBUGGER SOURCE LISTING

BEGIN
ANOTHER :- TRUE;
WHILE ANOTHER DO
BEGIN
WRITELN;
WRITELN(' TYPE IN THE IDENTIFIER YOU WISH TO DISPLAY ');

GOCOMPARE;

IF MATCHTABLE (11 - 0 THEN
WRITELN(' NO MATCH FOUND FOR THIS IDENTIFIER ")
ELSE
BEGIN (* AT LEAST ONE MATCH HAS BEEN FOUND *)
FOR I :- 1 TO TABSIZE DO
BEGIN
IF MATCHTABLE [I] > 0 THEN (*COULD BE DEFINED AT

MORE THAN ONE LEVEL*)
BEGIN
J := MATCHTABLE [I];
IF J > 0 THEN
WITH SYMTABLE [J] DO
BEGIN
IF TYPES = 2 THEN (* IDENTIFIER IS DEFINED

AS CONSTANT *)
BEGIN

FOR K := 1 TO STRINGLEN DO
WRITE(STRINGSTORE [K]);

WRITELN(' - ',SYVALUE);
END;
IF TYPES = 1 THEN

(* IDENTIFIER IS A VARIABLE INTEGER *)
BEGIN
FOR K :- 1 TO STRINGLEN DO

(*FIND WHICH LEVEL DEFINED AT*)
WRITE(STRINGSTORE [K]);

WITH PROCESSOR [CURRENTPROCESSOR], IR DO
BEGIN
NUM :- LEXICAL;
TEMPBASE :- BASE;
K :- 0;
WHILE NUM <> 0 DO
BEGIN
IF S[TEMPBASE + SUBO] - SYLVL THEN
BEGIN (* DISPLAY THE ID'S VALUE *)
K :- K + 1;
IF K > I THEN
WRITELN(' EQUALS ',S[TEMPBASE + SYOFFSET]:5,

DECLARED AT FRAME ',NUM:2)
ELSE
WRITELN(' EQUALS ',S[TEMPBASE + SYOFFSET]:5,

DECLARED AT FRAME ',NUM:2);
END;

76

DEBUGGER SOURCE LISTING

IF TEMPBASE <> 0 THEN
TEMPBASE :- S[TEMPBASE + DLINKOJ;

NUM :- NUM - 1;
END;(*WHILE*)

IF K - 0 THEN
(*ID IS NOT DEFINED AT ANY FRAME YET*)

BEGIN (*PROC MUST NOT HAVE BEEN EXECUTED YET*)
FOR K :- I TO TABSIZE DO (*OR HAS BEEN

REMOVED FROM STACK*)
IF SYMTABLE [KI.TYPES - 3 THEN
IF SYLVL - SYMTABLE [K].SYLVL THEN
BEGIN
WRITE('.');
FOR L :- I TO SYMTABLE[K].STRINGLEN DO
WRITE(SYMTABLE[K].STRINGSTORE[L]);
WRITELN(' IS NOT DEFINED ');
K :- TABSIZE;

END;
END;

END;(*WITH*)

END;(*IF TYPE 1*)
END;(*WITH*)
END;(*IF*)

END;(*FOR*)
END;(*ELSE*)

WRITELN;
WRITE(' IF YOU WANT TO DISPLAY ANOTHER');
WRITELN(' IDENTIFIER TYPE: C ');
WRITELN(' IF NOT TYPE IN ANY CHARACTER');
READ(CH); (*DUMMY*)
READ(CH);
IF CH <> 'C' THEN ANOTHER :- FALSE;

END;(*WHILE*)
END;

********************* *************************************)

(*** GO MODIFY PROGRAM ***********************************)

(* WILL ALLOW FOR A DIRECT LINK TO EDITOR*)
(* NOT IMPLEMENTED YET*)

PROCEDURE GOMODIFYROGRAM;

BEGIN
JPITELN(' THIS SECTION IS NOT IMPLEMENTED YET SO ');
WRITELN(' THE DEBUGGER IS NOW ABOUT TO TERMINATE ');
WITELN(' YOU CAN GET THE EDITOR ON YOUR OWN. BYE);

77

DEBUGGER SOURCE LISTING

END;

(*** GO SINGLE *E**********************************)

(* THIS PROCEDURE SETS A BREAKPOINT FOR EVERY NEW

SOURCE LINE ENCOUNTERED *)

PROCEDURE GOSINGLESTEP;

BEGIN
SINGLESTEP := TRUE;
CURRENTSTEP : LINENUMTABLE[PC1I.CODENUM;
WRITELN;
WRITELN(' THE PROGRAM IS NOW IN THE SINGLE STEP MODE ");
WRITE(' AFTER EVERY SOURCE LINE EXECUTED THE');
WRITELN(' DEBUGGER WILL STOP');
WRITELN;
END;(*SINGLESTEP*)

(*** GO JUMP **)

(*JUMP ALLOWS THE USER TO SKIP OVER CODE WITHOUT EXECUTION

OR TO RETURN TO A GIVEN SOURCE LINE FOR EXECUTION AGAIN.
THIS WILL WORK ONLY WITHIN A GIVEN FRAME OF THE STACK. A
JUMP OUTSIDE THE CURRENT STACK FRAME WILL CAUSE FATAL ERROR*)

PROCEDURE GOJUMP;
VAR
CH : CHAR;
NUM : INTEGER;

BEGIN
WRITELN;
WRITELN(' *****CAUTION*****');
WRITELN(' YOU MAY JUMP TO A SOURCE LINE AT THE CURRENT LEVEL
WRITELN(' A JUMP TO ANY OTHER LEVEL WILL CAUSE AN ABORT');
WRITELN(' IF YOU WISH TO CONTINUE TYPE: C');
WRITELN(' IF YOU WANT TO FORGET IT TYPE: ANY CHARACTER');
READ(CH); READ(CH); (*DUMMY*)
IF CH - 'C' THEN
BEGIN
WRITELN(' TYPE IN THE SOURCE LINE YOU WISH TO JUMP TO');
READ(NUM);

4. IF NUN > CODEXMAX THEN TERMINATION :- TRUE
78

DEBUGGER SOURCE LISTING

ELSE
WITH PROCESSOR [CURRENTPROCESSOR] DO
PC :- LINENUMTABLE [NUM].CODENUM + 1;

END;

END; (*jUMP*)

********************************** ******************)*

(*** CHECK FOR BREAK ********************************)

(* THIS PROCEDURE CHECKS TO SEE IF A BREAKPOINT HAS BEEN
ENCOUNTERED. IF THE BREAKPOINT HAS BEEN HIT PC1 IS SET *)

PROCEDURE CHECKFORBREAK;
VAR
I : INTEGER;

BEGIN
FOR I :- 1 TO SOURCELINECOUNT DO
BEGIN
IF LINENUMTABLE[I].CODENUM - PCI THEN
BEGIN
IF CURRENTSTEP <> PC1 THEN

BEGIN

IF SINGLESTEP THEN (* SINGLE STEP BREAK?*)
BEGIN
CURRENTSTEP :- PC1;
BREAKPOINT :- PC1;

END;
IF MULTISTEP THEN (* MULTI STEP BREAK?*)
BEGIN
CURRENTSTEP :- CURRENTSTEP + 1;

(*ADD ONE TO STEP COUNT*)
IF CURRENTSTEP - NUMSTEPS THEN
BEGIN
BREAKPOINT :- PCI;
CURRENTSTEP := 0;

END;
END;

END;
END;

END;
END;

(*** CHANGE VALUE ********************************)
************************** *************************

(* CHANGES THE VALUE AT THE GIVE FRAME TO THE NEW

VALUE SPECIFIED BY THE USER*)
79

DEBUGGER SOURCE LISTING

PROCEDURE CHANGEVALUE;
VAR
NUM, LVL, TEMPBASE, K INTEGER;

BEGIN
WITH PROCESSOR [CURRENTPROCESSOR] DO
WITH SYMTABLE [MATCHTABLE [1]] DO
BEGIN
IF TYPES - 2 THEN

(*REQUESTED ID IS DEFINED AS A CONSTANT *)

BEGIN
WRITELN;
WRITELN(' THE IDENIFIER ASKED FOR IS A CONSTANT');
WRITELN(' YOU ARE NOT ALLOWED TO CHANGE THIS VALUE');
WRITELN;

END;
IF TYPES = 1 THEN (* IDENTIFIER IS INTEGER *)
BEGIN
NUM :- LEXICAL;
TEMPBASE :- BASE;
K := 0;
WHILE NUM <> 0 DO (*IS IT DEFINED AT MORE THAN ONE FRAME*)
BEGIN
IF S[TEMPBASE + SUBOI - SYLVL THEN
K :- K + 1; (*TEMP VALUE FOR COUNTING FRAMES*)

IF TEMPBASE <> 0 THEN
TEMPBASE :- S[TEMPBASE + DLINKOI;

NUM := NUM - 1;
END; (*WHILE*)
IF K = 0 THEN (*NO FRAMES ENCOUNTERED FOR THIS ID*)
WRITELN(' THE IDENTIFIER IS NOT DECLARED YET ');

IF K - I THEN
BEGIN (*FRAME WAS FOUND AND AT ONLY ONE LEVEL*)
WRITELN(' TYPE IN THE NEW VALUE ');

READ(NUM);
TEMPBASE :- BASE;
K :- LEXICAL;
WHILE K <> 0 DO
BEGIN
IF S[TEMPBASE + SUBO] - SYLVL THEN
BEGIN
S[TEMPBASE + SYOFFSET] :- NUM;
WRITELN(' IDENTIFER MODIFIED ');
K :- 0;
END

ELSE
BEGIN
IF TEMPBASE <> 0 THEN
TEMPBASE :- S[TEMPBASE + DLINKOI;

K :- K - 1;
END;

END;(*WHILE*)
80

DEBUGGER SOURCE LISTING

END;(*IF K - 1*)
IF K > I THEN (*ID DEFINED AT MORE THAN ONE FRAME*)
BEGIN
TEMPBASE :- BASE;
WRITELN(' IDENTIFIER DEFINED IN MORE THAN ONE FRAME. ');
WRITELN(' TYPE IN THE FRAME YOU WANT IT CHANGED IN. ');
READ(NUM);
NUM := LEXICAL - NUM;
IF NUM < 0 THEN NUM :- 0; (*DEFAULT TO CURRENT FRAME*)
WHILE NUM > 0 DO
BEGIN

TEMPBASE :- S[TEMPBASE + DLINKO];
NUM := NUM - 1;

END;
IF StTEMPBASE + SUBO] - SYLVL THEN
BEGIN
WRITELN(' TYPE IN THE NEW VALUE ");
READ (NUM);
S(TEMPBASE + SYOFFSET] :- NUM;
WRITELN(' IDENTIFIER MODIFIED ');

END
ELSE
WRITELN(' IDENTIFIER NOT DEFINED IN THIS FRAME ');

END;(*K > 1*)
END;(*IF TYPE 1*)
END;(*END WITH*)

END;(*END CHANGE VALUE*)

(***MORE THAN ONE *************

(* THE SELECTED ID IS DEFINED IN MORE THAN ONE PROCEDURE*)
(* ASKES USER WHICH PROCEDURE FOR ID IS TO BE USED AND
CHECKS TO MAKE SURE IT IS IN THAT PROCEDURE AND THAT THE
PROCEDURE IS IN ACTIVE*)

PROCEDURE MORETHANONE;
VAR
CH : CHAR;
I, J, SAVE, LVL : INTEGER;
MATCH : BOOLEAN;
SAVID : ARRAY [I .. MAXSSTOREI OF CHAR;

BEGIN
WRITELN;
WRITELN(' YOU HAVE SELECTED AN IDENTIFIED WHICH rS');
WRITELN(' DEFINED AT MORE THAN ONE PROCEDURE.');
WRITELN(' TO MODIFY THE IDENTIFIER YOU MUST GIVE');
WRITE(' THE PROCEDURE FOR THE IDENTIFIER YOU WANT TO');
WRITELN(' MODIFY.');

81

DEBUGGER SOURCE LISTING

WRITELN;

FOR I :- 1 TO MAXSSTORE DO
SAVID [I] :- ' ";

WRITELN(' TYPE IN THE PROCEDURE FOR THIS IDENTIFIER');
WITH SYMTABLE [MATCHTABLE [i1 DO

(*SAVE IDENTIFIER STRING*)
BEGIN
FOR I :- 1 TO STRINGLEN DO

(*SAVE THE REQUESTED ID IN SAVID*)
SAVID [I] := STRINGSTORE [I];
END;(*WITH*)

GOCOMPARE; (*GO GET INPUT PROCEDURE*)
IF MATCHTABLE [11 - 0 THEN
WRITELN(' NO MATCH FOUND FOR THIS PROCEDURE ')

ELSE
BEGIN (*FIND THE MATCHING IDENTIFIER

AT PROCEDURE LEVEL IN STACK*)
SAVE :- SYMTABLE [MATCHTABLE[II].SYLVL;
MATCH :- FALSE;
MATCHTABLE [i :- 0;
FOR J :- 1 TO TABSIZE DO
BEGIN
WITH SYMTABLE [J] DO
BEGIN
FOR I :- 1 TO MAXSSTORE DO
BEGIN
IF STRINGSTORE (I] <> SAVID (I] THEN
BEGIN
MATCH :- FALSE;
I :- MAXSSTORE;

END
ELSE
IF SYLVL - SAVE THEN
MATCH :- TRUE;

END;(*FOR*)

IF MATCH THEN
BEGIN
MATCHTABLE [1] :-J;
J :- TABSIZE;

END;
END;(*WITH*)
END;(*FOR*)

END;(*ELSE*)
IF MATCHTABLE (11 - 0 THEN

WRITELN(' THIS IDENTIFIER NOT DEFINED IN THE PROCEDURE')
ELSE
CHANGEVALUE;

END;(* MORE THAN ONE*)

82

DEBUGGER SOURCE LISTING

(***GO OD ***************************************
****GO MODVAL***)

(*THE USER HAS REQUESTED TO MODIFY AN ID, A CHECK MUST BE*)
(*PERFORMED TO SEE IF IT IS VALID AND AT HOW MANY LEVELS IT*)
(*IS DEFINDED AT*)

PROCEDURE GOMODVALUE;
VAR
CH : CHAR;
NUM : INTEGER;
ANOTHER BOOLEAN;
BEGIN
ANOTHER :- TRUE;
WHILE ANOTHER DO
BEGIN
WRITELN;
WRITELN(' TYPE IN THE IDENTIFIER YOU WISH TO MODIFY');
GOCOMPARE;
NUM :- 0;
FOR I :- 1 TO TABSIZE DO
BEGIN
IF MATCHTABLE [1] <> 0 THEN
NUM :- NUM + 1;

END;
IF MATCHTABLE [11] - 0 THEN
BEGIN
WRITELN(' NO MACH FOUND FOR INPUT IDENTIFIER');

END
ELSE
BEGIN
IF NUM > 1 THEN MORETHANONE
ELSE CHANGEVALUE;

END;
WRITELN;
WRITELN('IF YOU WANT TO MODIFY ANOTHER IDENTIFIER TYPE:C')
WRITELN(' IF NOT TYPE IN ANY CHARACTER');
READ(CH);READ(CH);(*DUMMY*)
IF CH <> 'C' THEN ANOTHER :- FALSE;

END;(*WHILE*)
END;

(***GO OUTPUT S **)

(* OUTPUTS DISPLAYS THE CONTENTS OF THE STACK *)

PROCEDURE GOOUTPUTS;
83

DEBUGGER SOURCE LISTING

VAR I : INTEGER;
BEGIN

WITH PROCESSOR [CURRENTPROCESSOR] DO
FOR I :- I TO T DO
WRITELN(' ',I,' ,S[I]);

END;

(*** OPTIONS ***)

(* OPTIONS READS IN THE REQUESTS FROM THE USER AND CALLS THE

PROCEDURE INVOLVED FOR SET UP *)

PROCEDURE OPTIONS;
VAR
I, J : INTEGER;
CH : CHAR;

BEGIN
STOPEXECUTION := FALSE;
WRITELN(' PLEASE TYPE IN COMMAND THAT YOU WISH TO PERFORM
WRITELN;
WRITE(' IF YOU WANT A LIST OF THE AVAILABLE COMMANDS');
WRITELN(' TYPE H FOR HELP ');
IF NOT FIRSTPASS THEN
BEGIN
WRITELN(' CURRENT LINE IS: ');
FOR I := 1 TO SOURCELINECOUNT DO
IF LINENUMTABLE [I].CODENUM - (PC1 - 1) THEN

J :- I;
WRITE(' ',J,' ');
FOR I :- 1 TO 50 DO
WRITE(LINENUMTABLE [J].SOURCECODE[IJ);

WRITELN;
END;

WRITELN; READ(CH);
READ(CH);
WRITELN;
IF CH - 'H' THEN
BEGIN
IF FIRSTPASS THEN
BEGIN
WRITELN(' YOUR OPTIONS FOR THE DEBUG PROGRAM ARE :');
WRITELN(' SET A BREAKPOINT, TYPE: B');
WRITELN(' TRACE, TYPE: T ');
WRITELN(' EXECUTE N STATEMENTS AT A TIME, TYPE: N');

84

- I I I II II III I I II III .. . I I

DEBUGGER SOURCE LISTING

WRITELN(' SINGLE STEP, TYPE: S');
WRITELN;
READ(CH); READ(CH); (*DUMMY CHAR READ*)
WRITELN

END
ELSE
BEGIN
WRITELN(' YOUR OPTIONS FOR THE DEBUG PROGRAM ARE :');
WRITELN(' SET A BREAKPOINT, TYPE: B');
WRITELN(' TRACE, TYPE: T');
WRITELN(' EXECUTE N STATEMENTS AT A TIME, TYPE: N');
WRITELN(' SINGLE STEP, TYPE: S');
WRITELN(' JUMP TO SOURCE LINE, TYPE: J');
WRITELN(' DISPLAY A VALUE, TYPE: D');
WRITELN(' MODIFY THE PROGRAM, TYPE: P');
WRITELN(' CONTINUE EXECUTION, TYPE: C');
WRITELN(' QUIT EXECUTION, TYPE: Q');
WRITELN(' MODIFY A VALUE, TYPE: M');
WRITELN(' OUTPUT THE STACK,TYPE: 0');
READ(CH) ; READ(CH);
WRITELN
END (* END ELSE FIRSTPASS*)

END; (* END IF H *)

IF (CH ' 'B') OR (CH - 'S') OR (CH = 'N') THEN REINITILIZE;
IF CH - 'Q' THEN TERMINATION :- TRUE;
IF CH - 'B' THEN GOBREAKPOINT;
IF CH - 'T' THEN GOTRACE;
IF CH = 'N' THEN GOEXECUTEN;
IF CH - 'S' THEN GOSINGLESTEP;
IF CH - 'J' THEN GOJUMP;
IF CH -. 'D' THEN GODISPLAY;
IF CH - 'P' THEN GOMODIFYPROGRAM;
IF CH - 'M' THEN GOMODVALUE;
IF CH - '0' THEN GOOUTPUTS;

END; (* END PROC OPTIONS *)

(* PROCEDURE INTERPRET *

PROCEDURE INTERPRET;
(*INTERPRETATION OF THE RELATIONAL OPERATORS IS DEPENDENT

ON THE VALUE OF ORD (FALSE). PROPER OPERATION REQUIRES
THE ORD OF FALSE TO EQUAL 0 *)

PROCEDURE ASSIGN (QNAME : PRIORITIES ; PROCESSORNUM : INTEG
(*PROCEDURE ASSIGN REMOVES THE GIVEN TASK FROM THE QUEUE

85

DEBUGGER SOURCE LISTING

WHERE IT WAITS AND INITIALIZES THE GIVEN PROCESSOR WITH
THE DATA NECESSARY TO BEGIN EXECUTION. THE TASK IS
SPECIFIED BY AN INTEGER WHICH POINTS TO THE STACK
FRAME OF THE TASK. THE INITIALIZATION DATA IS STORED

IN THE TASK'S STACK FRAME.*)
VAR TASKPTR : INTEGER; (*PTR TO TASK ACTIVATION RECORD*

BEGIN
(*UNLINK THE GIVEN TASK FROM ITS QUEUE*)
TASKPTR :- READY [QNAME];
READY [QNAME] :- S [TASKPTR + LINKO];

(*INITIALIZE THE PROCESSOR -- THE REQUIRED DATA IS STORED

THE STACKFRAME POINTED TO BY 'TASKPTR'*)
WITH PROCESSOR [PROCESSORNUMI DO BEGIN

PC := S [TASKPTR + PCO];
BASE :- S [TASKPTR + BASEOI;
T := S [TASKPTR + TOFF];
HEAP := S [TASKPTR + HEAPO];
STATE := BUSY;
CURRENTJOB := TASKPTR;
ICOUNT :- 0;
END (*WITH PROCESSORNUM*)

END (*ASSIGN*);

PROCEDURE SCHEDULE;
(*PROCEDURE SCHEDULE ASSIGNS IDLE PROCESSORS TO WAITING

TASKS. SCHEDULING IS CONITINUED FOR AS LONG AS THERE
ARE PROCESSORS THAT ARE IDLE AND TASKS THAT ARE WAITING

IN THE READY QUEUE*)

FUNCTION WAITINGTASK : PRIORITIES;
(*FUNCTION WAITING TASK SEARCHES THE READY QUEUES IN
ORDER OF PRIORITY (WHERE PRIORITY5 IS THE HIGHEST
AND PRIORITY1 IS THE LOWEST) AND RETURNS THE QUEUE
NUMBER OF THE TASK WITH THE HIGHEST PRIORITY*)

VAR MARKER : PRIORITIES;
BEGIN
MARKER :- 5; (*BEGIN THE SEARCH WITH THE HIGHEST PRIOR

QUEUE*)
WHILE READY [MARKER] - 0 DO MARKER :- MARKER - 1;
WAITINGTASK :- MARKER

END (*WAITINGTASK*);

FUNCTION IDLEPROCESSOR : INTEGER;
(*FUNCTION IDLE PROCESSOR SEARCHES FOR AN IDLE SYSTEM

PROCESSOR. THE FUNCTION RETURNS
THE NUMBER OF THE FIRST IDLE PROCESSOR IT FINDS*)

VAR PINDEX INTEGER;
FOUND : BOOLEAN;

86

DEBUGGER SOURCE LISTING

FOUND :- FALSE; PINDEX := 1;
WHILE (PINDEX <- NUMPROCESSORS) AND (NOT FOUND) DO

IF PROCESSOR [PINDEX].STATE - IDLE THEN
FOUND :- TRUE

ELSE
PINDEX := PINDEX + 1;

IF FOUND THEN
IDLEPROCESSOR := PINDEX

ELSE
IDLEPROCESSOR := 0;

END (*FUNCTION IDLEPROCESSOR*);

BEGIN (*SCHEDULE TASK*)
WHILE (IDLEPROCYSSOR <> 0) AND (WAITINGTASK <> 0) DO
ASSIGN (WAITINGTASK, IDLEPROCESSOR)

END (*SCHEDULE*);

FUNCTION NEWP (VAR HEAPTR : INTEGER;NUMWORDS : INTEGER) I
BEGIN

NEWP :- HEAPTR + 1;
HEAPTR := HEAPTR + NUMWORDS

END (*NEW*);

PROCEDURE ENTERINQ (TFRAME, PRIORITY : INTEGER);
(*PROCEDURE ENTERINQ ENTERS TASK 'TFRAME'

IN THE SPECIFIED READY QUEUE*)
BEGIN

S[TFRAME + LINKO] :- 0;
IF READY [PRIORITY] <> 0 THEN BEGIN (*TASKS IN QUEUE*)
TEMPTR :- READY (PRIORITY];
WHILE S[TEMPTR + LINKO] <> 0 DO

TEMPTR :- S[TEMPTR + LINKO];
(*TEMPTR NOW POINTS TO THE LAST TASK IN THE QUEUE*)
S [TEMPTR + LINKO] :- TFRAME;
END (*TASKS IN QUEUE*)

ELSE (*QUEUE EMPTY*)
READY [PRIORITY] :- TFRAME;

END (*ENTERIN_QUEUE*);

PROCEDURE RESTOFCASE(CURRENTPROCESSOR : INTEGER;IR INSTRUCT
BEGIN

WITH PROCESSOR [CURRENTPROCESSOR], IR DO
CASE OP OF

ZAND : BEGIN
T :- T - 1;
SIT] :- SIT] + S[T + 1];
IF S[T] 2 THEN

SIT] :- ORD (TRUE)
ELSE

SET : ORD (FALSE)

END (*XAND*);

87

DEBUGGER SOURCE LISTING

CALL : BEGIN
S[T + SLINKO + 1] :- FINDBASE (LEVEL,BASE);
S[T + DLINKO + 1] : BASE;
S[T + PCO + 1] :- 0;
SET + I + TASKFLAGO] := 0; (*FALSE*)
SET + 1 + ANTO] :- 0;
S[T + 1 + WAITO] := 0;
S[T + I + HEAPO] :- 0;
SET + 1 + BASEO] := 0;
SET + I + TOFF] :- 0;
SET + 1 + LINKO] :u 0;
S[T + I + PRIORITYO] :- 5; (*FIX*)
S[T + I + CALLERO] :- 0;
S[T + I + EXCEPTO] := 0;
S[T + 1 + DATALOCKO] := 0;
S[T + 1 + ENTRYO] : 0;
S[T + I + RETURNO] :- PC;
SET + 1 + SUBO] := ADDR;
BASE := T + 1; LEXICAL :- LEXICAL + 1; PC : ADDR;

WRITE(' ');
FOR I := I TO TABSIZE DO
WITH SYMTABLE EI] DO
BEGIN
IF S[BASE + SUBO] - SYLVL THEN
BEGIN
IF TYPES = 3 THEN

BEGIN
FOR I :1 1 TO STRINGLEN DO
WRITE(STRINGSTORE Ei1);
I := TABSIZE;

END;
END;

END;
WRITELN(' ENTERED');

END;

PARAMSHIFT : BEGIN (*PARAMSHIFT, # OF WORDS, T-INCREMENT*)
T :- T + IR.ADDR;
FOR I : 1 TO IR.LEVEL DO

SET - (I-I)] :- S[(T-IR.ADDR) - (I-I)];
END (*PARAMSHIFT*);

CONCAT :

EQUAL : BEGIN T :- T - 1; S[T] :- ORD (SET] - S[T + 1])
END;

(*EXPON : BEGIN T :- T - 1; S[T] :- S[T] ** S[T + 1]
END; MODIFY FOR DIFFERENT ARGUMENT TYPES*)

88

- -- - --t-- - .

, AD-A115 636 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/G 9/2

ANALYSIS AND DESIGN OF INTERACTIVE DEBUGGING FOR THE ADA PROGRA--ETCIU)

NOV 81 R L GAUDINO
UNCLASSIFIED AFIT/GCS/MA/AiD3 3L

DEBUGGER SOURCE LISTING

GTR : BEGIN T :- T - 1 ; S[T] :- ORD (SIT] > SIT + 11)
END;

GTREQ : BEGIN T :- T - 1; S[T] :- ORD (S[T] >- S[T + 11)
END;

IADD BEGIN T :, T - 1; SIT] :, SIT] + S[T + 1]
END;

IDIV : BEGIN T :, T - 1; S[T] :, S[T] DIV S[T + 11
END;

IMULT : BEGIN T :- T - 1; SIT] :- SIT] * SIT + 11

END;

INEGATE : S[T] :- -SIT];

ISUB : BEGIN T :" T - 1; S[T] :- SIT] - S[T + 1]
END;

ZIN : BEGIN
T :- T - 2;
IF (S[T] >- S[T + 11) AND (SET] <-SET + 2]) THEN

S[T] :- ORD (TRUE)
ELSE

SIT] :, ORD (FALSE)
END (*XIN*);

INCT : T :- T + ADDR;

JMP PC :- ADDR;

JMPF : BEGIN
IF S [T] - 0 THEN PC :" ADDR;
T :- T - 1
END;

JMPT : BEGIN
IF S [T] - 0 THEN PC :- ADDR;
T :- T - 1
END;

LESS : BEGIN T :- T - 1; SIT] :- ORD (SET] < SET + 1])
END;

LESSEQ : BEGIN T :- T - 1; SIT] :, ORD (S[T] <- SIT + 11)
END;

ILOAD : BEGIN T "-T + 1; SIT] :"
S [FINDBASE (LEVEL,BASE) + ADDR]

END;
89

r~ DEBUGGER SOURCE LISTING

ENTILOAD : BEGIN
(*SET TEMPTR TO THE BASE OF CALLER'S TASKFRAME*)

TEMPTR :- S [CURRENTJOB + CALLERO];
(*SET TEMPTR TO THE TOP OF THE CALLER'S STACK*)

TEMPTR :- S [TEMPTR + TOFF];
T :- T + 1;
S[T] :- S[TEMPTR + IR.ADDRJ;
END (*ENTILOAD*);

ENTISTORE : BEGIN
(*SET TEMPTR TO THE BASE OF THE CALLER'S TASKFRAME*)

TEMPTR :- S[CURRENTJOB + CALLERO];
(*SET TEMPTR TO THE TOP OF THE CALLER'S STACK*)

TEMPTR :- S[TEMPTR + TOFF];
S[TEMPTR + IR.ADDR] :- S[T];
T :- T - 1;
END (*ENTISTORE*);

ILOADCONST BEGIN T : T + 1; S[T] : ADDR

END;

RLOADCONST (*DEFINE REALS*);

IMOD : BEGIN T :- T - 1; S[T] :" SIT] MOD S[T + 11
END;

NOTEQ : BEGIN T :- T - 1; SIT] :- ORD (SIT] <> S[T] + 1)
END;

RADD : (*DEFINE FLOATING POINT FORMAT*);

RAISE (*FILL IN THE BLANK*) ;

RDIV : (*DEFINE FLOATING POINT FORMAT*);

IREM : (*WRITE ROUTINE*);

RETURN : BEGIN
(*SEE IF THERE ARE ANY ACTIVE NESTED TASKS*)

IF S [BASE + ANTO] - 0 THEN BEGIN (*NONE ACTIVE*)
WRITE(' ');
FOR I :- 1 TO TABSIZE DO
WITH SYMTABLE [I] DO
BEGIN
IF S[BASE + SUBO] - SYLVL THEN
BEGIN
IF TYPES - 3 THEN
BEGIN
FOR I :- I TO STRINGLEN DO
WRITE(STRINGSTORE[I]);
I :- TABSIZE;

90

DEBUGGER SOURCE LISTING

END;
END;
END;

WRITELN(' EXIT');
T :-BASE - 1;
PC :-S [BASE + RETURNOI;
BASE :- S [BASE + DLINKO];
LEXICAL :- LEXICAL - 1;
END (*NONE ACTIVE*)

ELSE BEGIN (*WAIT FOR TASK(S) TO COMPLETE*)
(*SET PARENT WAITING FLAG*)
WRITE(' ');
FOR I :- 1 TO TABSIZE DO
WITH SYMTABLE [1] DO
BEGIN
IF S[BASE + SUBO] - SYLVL THEN
BEGIN
IF TYPES -3 THEN
BEGIN
FOR I1: 1 TO STRINGLEN DO
WRITE(STRINGSTORE [II);
I :- TABSIZE;

END;
END;

END;
WRITE(' EXIT');
S !BASE + WAITO] :- 1;
(*SET PC BACK TO THE RETURN INSTRUCTION*)
S [BASE + PCO] :- PC - 1;
S [BASE + HEAPOI R- EAP;
S [BASE + BASEOI : BASE;
S [BASE + TOFF] :-T;
LEXICAL :- LEXICAL - 1;
(*GO TO SLEEP*)
PROCESSOR [CURRENTPROCESSORN.STATE :-IDLE;
ICOUNT :- ICOUNT + EXECUTIONLENGTH;
SCHEDULE;
END (*WAIT*)

END (*RETURN*);

RMULT :(*DEFINE FLOATING POINT FORMAT

RNEG ol

RSUB fil

ISTORE :BEGIN
S (FINDBASE(LEVEL,BASE) + ADDR] :- S[TJ;
IF TRACE THEN

BE GIN
WRITE(')

91

DEBUGGER SOURCE LISTING

FOR I :- 1 TO TABSIZE DO
WITH SYMTABLE [I] DO
BEGIN
IF ADDR - SYOFFSET THEN
BEGIN
IF SYLVL = S[FINDBASE(LEVEL,BASE) + SUBO] THEN
BEGIN
FOR I :I 1 TO STRINGLEN DO
WRITE(STRINGSTORE [I]);
I :- TkBSIZE;

END;
END;

END;
WRITELN (' IS NOW SET AT ', SIT]);

END;
T := T - 1;
END;

ZNEW BEGIN T :- T + 1; S[T] := NEWP (HEAP,ADDR)
END;

ZNOT : BEGIN
IF SIT] = 0 THEN

S[T] := ORD (TRUE)
ELSE

SIT] := ORD (FALSE)
END (*ZNOT*);

ZOR BEGIN
T :- T - 1;
SIT] :- S[T] + SIT + 1];
IF S[T] - 0 THEN

SIT] :- ORD (FALSE)
ELSE

SET] := ORD (TRUE)
END (*ZOR*);

ZXOR : BEGIN
T :- T - 1;
SIT] :- SET] + SIT + 1];
IF SET] 1 1 THEN

SET] :- ORD(TRUE)
ELSE

SIT] :- ORD (FALSE)
END (*ZXOR*);

END (*CASE*);
END (*REST OF CASE*);

BEGIN (*INTERPRET*)

(*SET STATE OF ALL PROCESSORS TO IDLE*)

FOR I :- I TO NUMPROCESSORS DO PROCESSOR [I].STATE := IDLE;
92

DEBUGGER SOURCE LISTING

(*INITIALIZE PRIMARY PROCESSOR*)
WITH PROCESSOR [PRIMARYPROCESSORJ DO BEGIN

T :- 0;
BASE :- 1;
LEXICAL :- 1;
PC :- 0;
HEAP :-MEMORYSIZE;
STATE :-BUSY;
ICOUNT :-0;
CURRENTJOB :- 1;
(*INITIALIZE THE STACKFRAME*)
FOR I I- TO TASKFRAMESIZE DO

Sf1] : 0;
S[BASE + TASKFLAGO] : 1; (*FLAG SET*)
S(BASE + PRIORITYOI : 5; (*FIX*)
END (*WITH PRIMARY PROCESSOR*);

CURRENTPROCESSOR :- PRIMARYPROCESSOR;

(*INITIALIZE READY QUEUE*)
FOR I :- 1 TO 5 DO READY [I] :- 0;
READY [0] :- 1;

(*BEGIN SIMULATION - PRIMARY PROCESSOR ACTIVE*)
TERMINATION :- FALSE;
WHILE NOT TERMINATION DO BEGIN

WITH PROCESSOR (CURRENTPROCESSORJ, IR DO
REPEAT

IF STOPEXECUTION THEN OPTIONS;
IR :- CODE [PC];
IF SINGLESTEP THEN CHECKFORBREAK;
IF MULTISTEP THEN CHECKFORBREAK;
IF BREAKPOINT - PC THEN STOPEXECUTION :-TRUE;
PC :-PC + 1;
PCi : PC;
ICOUNT :- ICOUNT + 1;
CASE OP OF

1* /0 OPERATIONS *

IGET : BEGIN
READ (S[T+1ID;
S[FINDBASE (LEVEL,BASE) + ADDR] :-S[T+1];
END (*IGET*);

IPUT : BEGIN (*PRINT VALUE ON TOP OF THE STACK*)
IF LEVEL - 0 THEN (*PUT WITHOUT CARRIAGE RETURN*)
WRITE (S(TJ)

ELSE
WRITELN (STI);

T :-T -1;

93

DEBUGGER SOURCE LISTING

END (*IPUT*);

SPUT : BEGIN (*PRINT STRING -- LENGTH STORED IN ADDR FIELD*)
FOR I :- 1 TO ADDR DO BEGIN

WRITE (CHR (CODE[PCI.ADDR):I);
PC :- PC + 1;
END (*FOR*);

IF LEVEL - 1 THEN (*PUT WITH CARRIAGE RETURN*)
WRITELN;

END (*SPUT*);

ACCEPT : BEGIN (*ACCEPT, 0, ENTRY # *)
(*THIS INSTRUCTION WAS WRITTEN WITH THE ASSUMPTION THAT
ENTRYFRAMES IMMEDIATELY FOLLOW THE ENTRY OFFSET IN THE
STACK FRAME. I.E. THE FIRST ENTRY FRAME BEGINS AT
BASE + ENTRYO + 1*)

(*COMPUTE A POINTER TO THE TASK'S 1ST ENTRY FRAME*)
EFRAMEPTR :- CURRENTJOB + ENTRYO + 1 +

(IR.ADDR - 1)*ENTRYFRAMESIZE;
(*SEE IF THIS ENTRY HAS ANY TASKS WAITING*)
IF S[EFRAMEPTR + EQUEO] - 0 THEN BEGIN (*NO TASKS WAITING*)

S[EFRAMEPTR + EGATEO] :1 1; (*OPEN GATE*)

(*GO TO SLEEP*)
S [CURRENTJOB + PCO] := PC - 1; (*POINTS TO THE ACCEPT

INSTRUCTION*)
S (CURRENTJOB + HEAPO] :- HEAP;
S [CURRENTJOB + BASEOJ := BASE;
S [CURRENTJOB + TOFF] :- T;
(*RELEASE PROCESSOR*)
PROCESSOR [CURRENTPROCESSOR].STATE :- IDLE;
ICOUNT :- ICOUNT + EXECUTIONLENGTH;
SCHEDULE;

(*A NEW PROCESSOR IS SELECTED ON EXIT FROM LOOP*)
END (*NO TASKS WAITING*)

ELSE BEGIN (*WAITING TASK*)
(*REMOVE TASK FROM QUEUE*)
S[CURRENTJOB + CALLERO] :- S[EFRAMEPTR + EQUEO];
S[EFRAMEPTR + EQUEO] :- S[S[BASE + CALLERO] + LINKO];
END (*WAITING TASK*);

END (*ACCEPT*);

ACTIVATE : BEGIN (*ACTIVATE, 0, TASKPTR);
(DATA, PRIORITY, REAP);
(DATA, 0, PC); (DATA, #ENTRIES, T*)

(*'TASKPTR' IS RELATIVE TO THE BASE OF THE PARENT.
HEAP AND T ARE RELATIVE TO 'TASKPTR'. THIS INSTRUCTION
WAS WRITTEN WITH THE ASSUMPTION THAT ENTRY FRAMES
IMMEDIATELY FOLLOW THE ENTRY OFFSET
IN THE STACK FRAME. I.E. THE FIRST ENTRY FRAME BEGINS AT
BASE + ENTRO + 1*)

94

DEBUGGER SOURCE LISTINGI
°

REPEAT
(*INITIALIZE THE STACKFRAME*)
(*NOTE : THE ACTIVATE INSTRUCTION REMAINS IN THE IR
THROUGHOUT THE INSTRUCTION'S
EXECUTION, EVEN THOUGH PC IS INCREMENTED*)

(*SET 'TEMPTR' TO THE BASE OF THE TASK BEING ACTIVATED*)

TEMPTR :- BASE + IR.ADDR;

S [TEMPTR + SLINKO] :- BASE; (*STATIC LINK ASSIGNMENT*)
S [TEMPTR + DLINKO] :- BASE; (*DYNAMIC LINK ASSIGNMENT*)
S [TEMPTR + PRIORITYO] :- CODE [PCJ.LEVEL; (*PRIORITY*)
S [TEMPTR + BASEO] :- TEMPTR; (*BASE*)
S [TEMPTR + HEAPO] : TEMPTR + CODE [PC].ADDR; (*HEAP PT

PC :- PC + 1;
S [TEMPTR + PCO] :- CODE [PC].ADDR; (*PROGRAM COUNTER*
PC :- PC + 1;
S [TEMPTR + TOFF] :- TEMPTR + CODE [PCI.ADDR;(*STACK PTR*
S [TEMPTR + ENTRYO] :- CODE [PC].LEVEL; (* # NUMBER OF

ENTRIES IN TASK*)

(*CLOSE ALL ENTRIES*)

FOR I :- TEMPTR + ENTRYO + I TO TEMPTR +
ENTRYO + ENTRYFRAMESIZE*CODE[PC].LEVEL DO

S [I] :- 0; (*CLOSED*)
PC :- PC + 1; (*PC NOW POINTS PAST THE LAST DATA WORD

OF THE ACTIVATE INSTRUCTION*)
(*INITIALIZE MISCELLANEOUS CONTROL WORDS IN THE STACKFRAME*)

S [TEMPTR + ANTO] :- 0; (*ACTIVE NESTED TASKS*)
S [TEMPTR + LINKO] :- 0; (*LINK*)
S [TEMPTR + DATALOCKOI :- 0; (*UNLOCKED*)
S [TEMPTR + EXCEPTO] :- 0;
S [TEMPTR + TASKFLAGO] :- 1;
S [TEMPTR + WAITO] :- 0;
S [TEMPTR + CALLERO] :- 0;
S [TEMPTR + RETURNO] :- 0;

(*INCREMENT THE ACTIVE NESTED TASK COUNTER OF THE PARENT --

NOTE: PARENT EXECUTES THIS INSTRUCTION*)
S [BASE + ANTO] :- S [BASE + ANTO] + 1;

ENTERINQ (TEMPTR, S [TEMPTR + PRIORITYO]);
IR :- CODE [PC];
IF IR.OP - ACTIVATE THEN PC :- PC + 1;

UNTIL IR.OP <> ACTIVATE;
(*UNLOCK QUEUES*)
SCHEDULE; (*GO TO SLEEP??*)
END (*ACTIVATE*);

CALLENTRY : BEGIN (*CALLENTRY, LEX DIFF, TASKPTR);
f(DATA, ENTRY#, #ENTRIES*)

(*THIS PROCEDURE WAS WRITTEN WITH THE ASSUMPTION THAT ENTRY

95

....'... I.

DEBUGGER SOURCE LISTING

FRAMES IMMEDIATELY FOLLOW ENTRYO IN THE STACK FRAME.
I.E. FIRST ENTRY FRAME MUST BEGIN AT BASE + ENTRYO + 1*)

(*'TASKPTR' IS RELATIVE TO THE BASE OF THE PARENT--
COMPUTE AN ABSOLUTE ADDRESS FOR THE BASE OF THE CALLED TASK
TEMPBASE (*TASK'S ABSOLUTE ADDRESS*) :- FINDBASE (LE'TEL, BA

IR.ADDR;

(*LINK CALLER TO THE CALLED TASK'S ENTRY QUEUE*)
(*ZERO CALLER'S LINK FIELD*)

S[CURRENTJOB + LINKO] :- 0;
(*COMPUTE A POINTER TO THE CALLED ENTRY'S QUEUE*)
EFRAMEPTR :- TEMPBASE + ENTRYO + I + (CODE[PCJ.LEVEL - 1)*

ENTRYFRAMESIZE;
TEMPTR :- EFRAMEPTR + EQUEO; (*TEMPTR NOW POINTS TO THE

HEAD OF THE ENTRY QUEUE*)
IF S[TEMPTR] - 0 THEN (*QUEUE EMPTY*)

S[TEMPTR] :- CURRENTJOB (*LINK CALLER TO THE QUEUE*)
ELSE BEGIN (*TASKS IN QUEUE*)

(*FIND THE END OF THE QUEUE*)
TEMPTR :- S[TEMPTR]; (*SET TEMPTR TO THE FIRST TASK IN

THE QUEUE*)
WHILE S[TEMPTR + LINKO] <> 0 DO

TEMPTR :- S [TEMPTR + LINKO];
(*TEMPTR POINTS TO THE LAST TASK IN QUEUE*)

S [TEMPTR + LINKO] :- CURRENTJOB;(*LINK CALLER TO QUEUE*)
END (*TASKS IN QUEUE*);

(*CHECK TO SEE IF THE CALLED TASK'S ENTRY IS OPEN*)
IF S [EFRAMEPTR + EGATEO] - 1 THEN BEGIN (*ENTRY OPEN*)

I :- TEMPBASE + ENTRYO + 1;
WHILE I <- TEMPBASE + ENTRYO + CODE[PC].ADDR * ENTRYFRAME
DO BEGIN

S [I + EGATEO] :- 0; (*CLOSED*)
I :- I + ENTRYFRAMESIZE;
END (*WHILE*);

ENTERINQ (TEMPBASE, S[TEMPBASE + PRIORITYO]);
END;

(*GO TO SLEEP -- SAVE THE MACHINE'S REGISTERS IN
CALLER'S TASKFRAME*)

S [CURRENTJOB + PCO] :- PC + 1;
S (CURRENTJOB + HEAPO] : HEAP;
S (CURRENTJOB + BASEO] :- BASE;
S (CURRENTJOB + TOFF] :- T;

(*RELEASE PROCESSOR*)

PROCESSOR [CURRENTPROCESSOR].STATE :- IDLE;
ICOUNT :- ICOUNT + EXECUTIONLENGTH;

SCHEDULE; (*DATA LOCK*)
END (*CALL ENTRY*);

RELEASE : BEGIN (*RELEASE, 0, ENTRY# *)
96

DEBUGGER SOURCE LISTING

(*RETRIEVE THE POINTER TO THE BASE OF THE CALLING TASK'S

TASKFRAME*)
TEMPTR :- S [CURRENTJOB + CALLERO];
ENTERINQ (TEMPTR, SITEMPTR + PRIORITYO]);
SCHEDULE;

(*GIVE UP PROCESSOR ?? DATA LOCKS*)
END (*RELEASE*);

TERMINATE : BEGIN (*TERMINATE,0,O*)
TEMPTR FINDBASE (1, BASE); (*SET TEMPTR TO THE PARENT'S

TASK FRAME*)
S [TEMPTR + ANTO] :- S [TEMPTR + ANTO] - 1;

IF (S [TEMPTR + ANTO] 0) AND
(S [TEMPTR + WAITO] 1) THEN
(*PARENT WAITING TO TERMINATE*)
(*WAKE UP PARENT*)
ENTERINQ (TEMPTR, S[TEMPTR + PRIORITYO]);

(*TERMINATE SELF*)
PROCESSOR [CURRENTPROCESSOR].STATE :- IDLE;
ICOUNT :- ICOUNT + EXECUTIONLENGTH;
SCHEDULE;
END (*TERMINATE*);

KILLTASK : BEGIN (*KILLTASK, 0, TASKPTR*)
(*** NOTE : THIS INSTRUCTION HAS NOT BEEN TESTED ***)
(*COMPUTE AN ABSOLUTE ADDRESS FOR THE CALLED

TASK'S STACKFRAME*)
TEMPBASE (*TASK'S ABSOLUTE ADDRESS*) :-

FINDBASE (LEVEL,BASE) + IR.ADDR;
(*FIND THE PROCESSOR EXECUTING THE TASKTO BE KILLED*)
TEMPTR :- 0;
FOR I : 1 TO NUMPROCESSORS DO

IF PROCESSOR [I].CURRENTJOB - TEMPBASE THEN
TEMPTR :- I;

IF TEMPTR > 0 THEN BEGIN (*FOUND*)
(*DECREMENT ANT COUNTER OF PARENT*)

I :- FINDBASE (1,IR.ADDR);
S (I + ANTO] :- S[I + ANTO] - 1;
(*TELL PROCESSOR TO STOP*)
PROCESSOR [TEMPTRJ.STATE :- IDLE;
PROCESSOR [TEMPTRI.CURRENTJOB :- 0;
SCHEDULE;
END (*FOUND*)

ELSE
(*LOOK IN THE READY QUEUES, AND REMOVE IF FOUND*);

END (*KILLTASK*);

OTHERS : RESTOFCASE(CURRENTPROCESSOR,IR);

END (*CASE*)
97

OWN -

(DEBUGGER SOURCE LISTING

UNTIL (PC - 0) OR (ICOUNT >- EXECUTIONLENGTH);
IF PROCESSOR [CURRENTPROCESSORI.PC - 0 THEN

(*EXECUTION COMPLETE*)
TERMINATION :- TRUE

ELSE BEGIN (*SELECT THE NEXT PROCESSOR*)
CURRENTPROCESSOR :- CURRENTPROCESSOR

MOD NUMPROCESSORS + 1;
I :- 0;

WHILE (PROCESSOR [CURRENTPROCESSOR].STATE - IDLE) A
(I <- NUMPROCESSORS) DO BEGIN

CURRENTPROCESSOR :- CURRENTPROCESSOR
MOD NUMPROCESSORS + 1;

I :- I + 1;
END (*WHILE*);

IF I > NUMPROCESSORS THEN BEGIN (*ERROR ABORT*)
TERMINATION :- TRUE;
WRITELN (' LOOPING IN INTERPRET -- ALL PROCESSORS
END (*ERROR ABORT*)

ELSE
PROCESSOR [CURRENTPROCESSORI.ICOUNT :- 0;

END (*SELECT*)
END (*WHILE NOT TERMINATION*)

END (*INTERPRET*);

**** ***)*

(*** INITILIZE **

(* SETS UP THE FLAGS AND READS IN THE INFORMATION IN
COMCOD.TXT WHICH WAS GENERATED FROM THE COMPILER *)

PROCEDURE INITIALIZE;
VAR OPX,I, J, LX, AX : INTEGER;

CH : CHAR;
DONE : BOOLEAN;

BEGIN
RESET(INFILE,'COMCOD.TXT');
FIRSTPASS :- TRUE;
TRACE :- FALSE;
BREAKPOINT :- -2;
CURRENTSTEP :- -2;
MULTISTEP :- FALSE;
SINGLESTEP :- FALSE;
READ(INFILE,CODEX);
READLN(INFILE);
FOR I :- 0 TO CODEX DO (* READ IN THE CODE PORTION*)

98

4r-~ -________________

/ - DEBUGGER SOURCE LISTING

WITH CODE [I] DO
BEGIN

READ (INFILE, OPX);
CASE OPX OF

1 : OPF: EQUAL; 2 :OP :-GTR; 3 :OP :-GTREQ;
4 : OPF: LESS; 5 : OP :-LESSEQ; 6 : OP :-NOTEQ;
7 :OP :-ZIN; 8 :OP :-ZNOT; 9 : OP :=ZNOT;
10 :OP :-ZAND; 11 :OP :-ZOR; 12 : OP :=ILOAD;
13 : OP :=ILOADCONST;
14 :OP :-ISTORE; 15 : OP :-IADD; 16 :OP :-ISUB;
17 : OP :-IDIy; 18 :OPF: IMULT;
19 : OP :=INEGATE;20 :OP :2IMOD;

21 : OP :=IREM; 22 : OPF: INCT;
23 :OP :=JMP; 24 :OP :-JMPF;
25 : OP :=JMPT; 26 : OP :-RAISE;
27 : OPF: RETURN; 28 :OPF: ZNEW;
29 : OP :-CONCAT; 30 :OP :=EXPON;
31 :OPF: CALL; 32 :OP :~ACTIVATE;
33 :OP :-CALLENTRY; 34 :OP :-TERMINATE;
35 : OP :-ACCEPT; 36 : OP :-RELEASE;
37 :OPF: DATA; 38 :OP :-IGET;
39 : OP :-IPUT; 40 :OP :=SPUT;
41 : OP :=ENTILOAD; 42 : OP :=KILLTASK;
43 :OP :=ENTISTORE; 44 : OP :-PARAMSHIFT;
END; (*CASE*)

AEAD(INFILE,LX);
LEVEL :- LX;
READ(CINFILE, AX) ;
ADDR :-AX;

END; (*END WITH *

READLN(INFILE); (*READ IN THE SOURCE LINE TABLE *
READ(INFILE,SOURCELINECOUNT);
READLN(INFILE);
FOR I :- 1 TO SOURCELINECOUNT DO
BEGIN
READ(INFILE,LINENUMTABLE [II .CODENUM);
FOR J :- 1 TO 50 DO
READ(INFILE,LINENUMTABLE [I].SOURCECODE [J]);

READLN(INFILE)
END;

FOR I :- 1 TO TABSIZE DO (*READ IN THE SYMBOL TABLE INFO*)
WITH SYMTABLE (11 DO
BEGIN
STRINGLEN :-0;

99

DEBUGGER SOURCE LISTING

TYPES :- 0;
SYLVL :- 0;
SYOFFSET :- 0;
SYVALUE :- 0;
FOR J :- I TO MAXSSTORE DO
STRINGSTORE [J :- "

END;
DONE :- FALSE;
I :- 1;
READ(INFILE,J); (*READ STRINGLEN*)
WHILE NOT DONE DO
BEGIN
WITH SYMTABLE [I] DO
BEGIN (*WITH*)
STRINGLEN :- J;
READ(INFILE,CH);
FOR J :- 1 TO STRINGLEN DO
BEGIN
READ(INFILE,CH);
STRINGSTORE [J] := CH"

END; (*END FOR *)
READ(INFILE,TYPES);

IF TYPES - I THEN
BEGIN
READ(INFILE,SYLVL);
READ(INFILESYOFFSET);

END;
IF TYPES - 2 THEN

READ(INFILE,SYVALUE);
IF TYPES - 3 THEN
READ(INFILE,SYLVL);
READ(INFILE,J);

I :- I + 1;
IF EOF THEN DONE :- TRUE;
IF J - 0 THEN DONE :- TRUE;
IF I - TABSIZE THEN DONE :- TRUE;
END;(* WITH*)

END; (*WHILE*)
FOR I :- 1 TO (TABSIZE - 1) DO
FOR J :- (I + 1) TO TABSIZE DO
BEGIN
IF SYMTABLE [I].TYPES - SYMTABLE [J].TYPES THEN
IF SYMTABLE [I].SYLVL - SYMTABLE [J].SYLVL THEN
IF SYMTABLE [I].SYOFFSET - SYMTABLE (J].SYOFFSET THEN
SYMTABLE [J].STRINGSTORE [11 -

END;
CLOSE(INFILE)

END; (* END INITIALIZE*)
BEGIN

INITIALIZE;
100

OPTIONS;
FIRSTPASS :-FALSE;

INTERPRET;

END.

101

VITA

Richard L. Gaudino was born on 14 May 1951 in DuBois,

Pennsylvania to Alfred P. Gaudino and Mary R. (Hetrick)

Gaudino. He attended high school at Haverling Central in

Bath, New York and graduated in 1969. In September of that

year, he entered Corning Community College in Corning, New

York and graduated with an Associates of Science in

Mathematics. He entered the Air Force in June of 1971. He

graduated from the University of Southwestern Louisiana with

a Bachelor of Science Degree in Mathematics in May of 1974.

He was commissioned in the USAF in August of 1974. His

assignments as an officer have included the 3900 Computer

Service Squadron, HQ SAC, at Offutt AFB, Nebraska and the

Rome Air Development Center at Rome, New York. He then

entered the Air Force Institute of Technology School of

Engineering at Wright Patterson AFB, Ohio in June of 1980.

Capt Gaudino was married on 15 May 1980 in Bath, New

York to Lauren C. Gaudino. They have two sons, Richard and

Brian.

102

SECURITY CLASSIFICATION OF THIS PAGE (Xhen DeaaEntrted)

READ IN4STRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/MA/81D-3 t

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOO CQVER.D

ANALYSIS AND DESIGN OF INTERACTIVE
DEBUGGING FOR THE ADA PROGRAMMING s. PERFORMING ORG. REPORT NUMBER
SUPPORT ENVIRONMENT

7. AUTHOR(.) S. CONTRACT OR GRANT NUMBER(*)

Richard L. Gaudino
Capt USAF

9. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM 9.,EMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFiCE NAME AND ADDRESS 12. REPORT DATE

December 1981

13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AOORESS(II different from Controllind Ollice) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ie, OECL. ASSI FICATI ON/OOWN GRAOING

SCHEDL

18. DISTRIBUTION STATEMENT (of eltis Report)

Approved for public release; distribution unlimited

IT. DISTRIBUTION STATEMENT (o the .batract .ntered in Sock 20. it different "m Report)

IS. SUPPLEMENTARY NOTE$ D
Professional

Developmeri- T1.AW AA 190- , AirForce institute Of Technoty (ATc)

Dean for Research and WrightPatterson AFB, O1 45433

19. KEY WO KOS fteW;ii caiM'..4 iepIaJ..y and Identify by block num ber)

ADA

INTERACTIVE DEBUGGING
COMPUTER DEBUGGING

~JABSTRACT (Conti nue on reveree side It nocoe..w and identify by blocki number)

This thesis involved the design and implementation of a skeletal
Interactive Ada debugger on the DEC-10 computer located at the
Air Force Wright Avionics Laboratory. An analysis of current
debugging technology was performed to formulat a basis for the
debugger tool development.The tools implemented where breakpoints,
single step and multi-step execution, display and modify program
variables, as well as other miscellaneous options. Two conclusions
were develoned as the result nf tht* heqfn offnrtr virat. hec .

, AN 1473 EDIT ION OF I Nov es Is OesoL.T

SECURITY CLASSIFICATION OF THIS PAGE ($ten bat Entere) .-

SECURITY CLASSIFICATION OF THIS PAGE(Whn Data Entered)

of the lack of information on current software debugging methods,
I have concluded that more emphasis is needed in techniques and
tdols for debugging of programs. Second, I have concluded that
more emphasis is needed in the human interfacing techniques.

O

SE[CjRqTY CL.ASSIFlCAT10%l 001
.

T 11, PAdler /n Data Eektorsd)

